## Series Convergence Analysis ### Problem Statement Evaluate the convergence or divergence of the series using the Integral Test: \[ \sum_{k=1}^{\infty} \frac{1}{k^{0.8}} \] ### Integral Test Use the Integral Test to determine whether the series converges or diverges. ### Options Select the correct answer: - ○ The series converges since the value of the integral is \(\frac{1}{0.2}\). - ○ The series diverges since the integral approaches \(\infty\). - ○ The series diverges since the integral approaches \(-\infty\). - ○ The series converges since the value of the integral is 0. ### Explanation To apply the Integral Test, consider the integral: \[ \int_{1}^{\infty} \frac{1}{x^{0.8}} \, dx \] Determine whether the result of this integral is finite or infinite to decide the behavior of the series.
## Series Convergence Analysis ### Problem Statement Evaluate the convergence or divergence of the series using the Integral Test: \[ \sum_{k=1}^{\infty} \frac{1}{k^{0.8}} \] ### Integral Test Use the Integral Test to determine whether the series converges or diverges. ### Options Select the correct answer: - ○ The series converges since the value of the integral is \(\frac{1}{0.2}\). - ○ The series diverges since the integral approaches \(\infty\). - ○ The series diverges since the integral approaches \(-\infty\). - ○ The series converges since the value of the integral is 0. ### Explanation To apply the Integral Test, consider the integral: \[ \int_{1}^{\infty} \frac{1}{x^{0.8}} \, dx \] Determine whether the result of this integral is finite or infinite to decide the behavior of the series.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Show steps
![## Series Convergence Analysis
### Problem Statement
Evaluate the convergence or divergence of the series using the Integral Test:
\[
\sum_{k=1}^{\infty} \frac{1}{k^{0.8}}
\]
### Integral Test
Use the Integral Test to determine whether the series converges or diverges.
### Options
Select the correct answer:
- ○ The series converges since the value of the integral is \(\frac{1}{0.2}\).
- ○ The series diverges since the integral approaches \(\infty\).
- ○ The series diverges since the integral approaches \(-\infty\).
- ○ The series converges since the value of the integral is 0.
### Explanation
To apply the Integral Test, consider the integral:
\[
\int_{1}^{\infty} \frac{1}{x^{0.8}} \, dx
\]
Determine whether the result of this integral is finite or infinite to decide the behavior of the series.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e42a2b2-efb8-46eb-8cec-2e3f314c850e%2F45bd55f8-4e58-40fc-9051-fe6bc1a7526e%2Fhlpv5s.jpeg&w=3840&q=75)
Transcribed Image Text:## Series Convergence Analysis
### Problem Statement
Evaluate the convergence or divergence of the series using the Integral Test:
\[
\sum_{k=1}^{\infty} \frac{1}{k^{0.8}}
\]
### Integral Test
Use the Integral Test to determine whether the series converges or diverges.
### Options
Select the correct answer:
- ○ The series converges since the value of the integral is \(\frac{1}{0.2}\).
- ○ The series diverges since the integral approaches \(\infty\).
- ○ The series diverges since the integral approaches \(-\infty\).
- ○ The series converges since the value of the integral is 0.
### Explanation
To apply the Integral Test, consider the integral:
\[
\int_{1}^{\infty} \frac{1}{x^{0.8}} \, dx
\]
Determine whether the result of this integral is finite or infinite to decide the behavior of the series.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning