Heat transfer is of critical importance in various industrial applications, including manufacturing. During machining, both the cutting tool and the workpiece will be significantly heated by friction heating. The heating of the cutting tool will reduce the tool hardness and strength, deteriorate the cutting quality, and shorten the tool life. Therefore, it is essential to prevent the overheating of the cutting tool during machining. Coolants are an instrumental part of machining to help cool the tool and the workpiece, provide lubricant, flush away chips, and prevent corrosion. The task of this project is to design the coolant to maintain the maximum machine tool temperature below 100°C during the side milling process. As shown in the figure below, the machine tool has a dian of 10 mm (D) and a length of 5 cm. The tool material is M2 high speed tool steel (T11302) and the workpiece is aluminum 6061. The spindle speed (w) is 2000 RPM and the cutting speed (v) is 50 mm/min. The feed force between the tool and the workpiece is 1 kN. The coolant flow properly covers the whole machine tool.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Heat transfer is of critical importance in various
industrial applications, including manufacturing.
During machining, both the cutting tool and the
workpiece will be significantly heated by friction
heating. The heating of the cutting tool will reduce
the tool hardness and strength, deteriorate the
cutting quality, and shorten the tool life. Therefore,
it is essential to prevent the overheating of the
cutting tool during machining. Coolants are an
instrumental part of machining to help cool the tool and the workpiece, provide lubricant, flush
away chips, and prevent corrosion. The task of this project is to design the coolant to maintain the
maximum machine tool temperature below 100 °C during the side milling process.
As shown in the figure below, the machine tool has a diameter of 10 mm (D) and a length of 5 cm.
The tool material is M2 high speed tool steel (T11302) and the workpiece is aluminum 6061. The
spindle speed (w) is 2000 RPM and the cutting speed (v) is 50 mm/min. The feed force between
the tool and the workpiece is 1 kN. The coolant flow properly covers the whole machine tool.
U∞
Coolant
Tool w
Workpiece
1
V
Transcribed Image Text:Heat transfer is of critical importance in various industrial applications, including manufacturing. During machining, both the cutting tool and the workpiece will be significantly heated by friction heating. The heating of the cutting tool will reduce the tool hardness and strength, deteriorate the cutting quality, and shorten the tool life. Therefore, it is essential to prevent the overheating of the cutting tool during machining. Coolants are an instrumental part of machining to help cool the tool and the workpiece, provide lubricant, flush away chips, and prevent corrosion. The task of this project is to design the coolant to maintain the maximum machine tool temperature below 100 °C during the side milling process. As shown in the figure below, the machine tool has a diameter of 10 mm (D) and a length of 5 cm. The tool material is M2 high speed tool steel (T11302) and the workpiece is aluminum 6061. The spindle speed (w) is 2000 RPM and the cutting speed (v) is 50 mm/min. The feed force between the tool and the workpiece is 1 kN. The coolant flow properly covers the whole machine tool. U∞ Coolant Tool w Workpiece 1 V
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY