he plant capacity of a 3-phase generating station consists of two 8 MVA generators of reactance 14·5% each and one 4 MVA generator of reactance 9·5%. These are connected to a common bus-bar from which loads are taken through a number of 3 MVA step-up transformers each having 4% reactance. Determine the MVA rating of the circuit breakers on (i) L.V. side and (ii) H.V. side. Reactances given are based on the MVA of each equipment. [(i) 15·24 MVA (ii) 50·25 MVA

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question

The plant capacity of a 3-phase generating station consists of two 8 MVA generators of reactance 14·5%
each and one 4 MVA generator of reactance 9·5%. These are connected to a common bus-bar from
which loads are taken through a number of 3 MVA step-up transformers each having 4% reactance.
Determine the MVA rating of the circuit breakers on (i) L.V. side and (ii) H.V. side. Reactances given
are based on the MVA of each equipment. [(i) 15·24 MVA (ii) 50·25 MVA]

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Load flow analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,