Given r(t)= , find the tangential and normal components of acceleration, for t>0.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem Statement: Finding Tangential and Normal Components of Acceleration**
Given the position vector function \( \mathbf{r}(t) = \langle t^2, t^2, t^3 \rangle \), find the tangential and normal components of acceleration, for \( t > 0 \).
**Explanation:**
The position vector \(\mathbf{r}(t)\) specifies the location of a particle in 3-dimensional space as a function of time \( t \).
To find the tangential and normal components of acceleration, we need to follow these steps:
1. **Calculate the Velocity Vector \(\mathbf{v}(t)\):**
\[
\mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt}
\]
Compute the derivative of \(\mathbf{r}(t)\) with respect to \( t \).
2. **Calculate the Speed \(v(t)\):**
\[
v(t) = \|\mathbf{v}(t)\|
\]
Compute the magnitude of the velocity vector.
3. **Calculate the Acceleration Vector \(\mathbf{a}(t)\):**
\[
\mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt}
\]
Compute the derivative of \(\mathbf{v}(t)\) with respect to \( t \).
4. **Calculate the Tangential Component of Acceleration \( a_T \):**
\[
a_T = \frac{d}{dt}v(t)
\]
5. **Calculate the Normal Component of Acceleration \( a_N \):**
\[
a_N = \sqrt{\|\mathbf{a}(t)\|^2 - a_T^2}
\]
Determine the component of acceleration perpendicular to the tangential component.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd91b0d75-3013-4add-be37-5e57ef1ff904%2F5561dd9b-d2f2-47d3-a9d7-2bf1a26b4bed%2F2v2n1q_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement: Finding Tangential and Normal Components of Acceleration**
Given the position vector function \( \mathbf{r}(t) = \langle t^2, t^2, t^3 \rangle \), find the tangential and normal components of acceleration, for \( t > 0 \).
**Explanation:**
The position vector \(\mathbf{r}(t)\) specifies the location of a particle in 3-dimensional space as a function of time \( t \).
To find the tangential and normal components of acceleration, we need to follow these steps:
1. **Calculate the Velocity Vector \(\mathbf{v}(t)\):**
\[
\mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt}
\]
Compute the derivative of \(\mathbf{r}(t)\) with respect to \( t \).
2. **Calculate the Speed \(v(t)\):**
\[
v(t) = \|\mathbf{v}(t)\|
\]
Compute the magnitude of the velocity vector.
3. **Calculate the Acceleration Vector \(\mathbf{a}(t)\):**
\[
\mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt}
\]
Compute the derivative of \(\mathbf{v}(t)\) with respect to \( t \).
4. **Calculate the Tangential Component of Acceleration \( a_T \):**
\[
a_T = \frac{d}{dt}v(t)
\]
5. **Calculate the Normal Component of Acceleration \( a_N \):**
\[
a_N = \sqrt{\|\mathbf{a}(t)\|^2 - a_T^2}
\]
Determine the component of acceleration perpendicular to the tangential component.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)