Given a vector of real numbers r = (r₁, r2, . . . , rn). We can convert this vector into a probability vector ‚ Pn) using the formulation: p¡ = e'¹/(Σï-₁ e¹¹), for all i. p = (P₁, P2, · Write a Python function vec_to_prob(r) that takes the vector r as input and returns the vector p. Both r and p will be numpy arrays. You can assume r is non-empty. Sample inputs and outputs: • Input: np.array([4, 6]), output: [0.11920292 0.88079708] • Input: np.array([3.4, 6.2, 7.1, 9.8]), output: [0.00151576 0.02492606 0.06130823 0.91224995] Hint: use numpy.sum [ ] # Write your function here Let's test your function. [ ] # Convert input from list to np.array first before calling your function to avoid errors print (vec_to_prob(np.array ( [4, 6]))) print (vec_to_prob (np.array( [3.4, 6.2, 7.1, 9.8]))) print (vec_to_prob(np.array([3, 5.5, 0])))

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
Given a vector of real numbers r = (r1, V2, . . ., rn). We can convert this vector into a probability vector
P = (P1, P2, . . ., Pn) using the formulation: p; = e¹¹/(Σï-₁ e¹¹), for all i.
Write a Python function vec_to_prob(r) that takes the vector r as input and returns the vector p. Both r and p will
be numpy arrays. You can assume r is non-empty.
Sample inputs and outputs:
Input: np.array([4, 6]), output: [0.11920292 0.88079708]
• Input: np.array([3.4, 6.2, 7.1, 9.8]), output: [0.00151576 0.02492606 0.06130823 0.91224995]
Hint: use numpy.sum
[ ] # Write your function here
Let's test your function.
[ ] # Convert input from list to np.array first before calling your function to avoid errors
print (vec_to_prob(np.array([4, 6])))
print (vec_to_prob (np. array ( [3.4, 6.2, 7.1, 9.8])))
print (vec_to_prob (np.array([3, 5.5, 0])))
Transcribed Image Text:Given a vector of real numbers r = (r1, V2, . . ., rn). We can convert this vector into a probability vector P = (P1, P2, . . ., Pn) using the formulation: p; = e¹¹/(Σï-₁ e¹¹), for all i. Write a Python function vec_to_prob(r) that takes the vector r as input and returns the vector p. Both r and p will be numpy arrays. You can assume r is non-empty. Sample inputs and outputs: Input: np.array([4, 6]), output: [0.11920292 0.88079708] • Input: np.array([3.4, 6.2, 7.1, 9.8]), output: [0.00151576 0.02492606 0.06130823 0.91224995] Hint: use numpy.sum [ ] # Write your function here Let's test your function. [ ] # Convert input from list to np.array first before calling your function to avoid errors print (vec_to_prob(np.array([4, 6]))) print (vec_to_prob (np. array ( [3.4, 6.2, 7.1, 9.8]))) print (vec_to_prob (np.array([3, 5.5, 0])))
Expert Solution
Step 1: Algorithm :

Algorithm: Convert Vector to Probability Vector

Input: 
- r: A numpy array of real numbers

Output:
- p: A numpy array representing the probability vector

Steps:
1. Calculate exp_r = e^r for each element in the input array r.
2. Compute the sum of all elements in exp_r using numpy.sum() and store it in a variable sum_exp_r.
3. Create an empty numpy array p with the same shape as r.
4. For each element in exp_r at index i:
    - Calculate p[i] = exp_r[i] / sum_exp_r.
5. Return the probability vector p as the output.

End of Algorithm

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Use of XOR function
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education