Given a metallic block comprising of 2 unknown materials namely A and B (as shown in Figure 1 below). 1. You are tasked to determine the heat flux (W/cm2) for node at coordinate (2, 2) using finite-difference approximations using Elliptical Equation (Control Volume Approach) for the temperature gradients at this node. 2. Estimate the flux value in the horizontal direction in materials A and B, and determine if these two fluxes should be equal. 3. Calculate the vertical flux in materials A and B. Should these two fluxes be equal? The following values for the constants is as provided here: Δz = 0.5 cm, h =10 cm, ka = 0.3 W/cm · C, kb = 0.5 W/cm · C and nodal temperatures are T22 = 51.6oC, T21 = 74.2oC, T23 = 45.3oC, T32 = 38.6oC and T12 = 87.4oC
Given a metallic block comprising of 2 unknown materials namely A and B (as shown in Figure 1 below).
1. You are tasked to determine the heat flux (W/cm2) for node at coordinate (2, 2) using finite-difference approximations using Elliptical Equation (Control Volume Approach) for the temperature gradients at this node.
2. Estimate the flux value in the horizontal direction in materials A and B, and determine if these two fluxes should be equal.
3. Calculate the vertical flux in materials A and B. Should these two fluxes be equal?
The following values for the constants is as provided here: Δz = 0.5 cm, h =10 cm, ka = 0.3 W/cm · C, kb = 0.5 W/cm · C and nodal temperatures are T22 = 51.6oC, T21 = 74.2oC, T23 = 45.3oC, T32 = 38.6oC and T12 = 87.4oC
Step by step
Solved in 4 steps with 2 images