For the linear programming problem to the right, (a) Set up the simplex tableau. (b) Determine the particular solution corresponding to the initial tableau. (a) Set up the simplex tableau. X= X u 1 0 COLL#] 0 0 (b) Determine the particular solution corresponding to the initial tableau. x=y=₁z=₁ u=146, v=w= M=0. 9 - 1 y 0 -5 Z 1 1 0 V 0 1 0 0 W 0 0 1 0 M 0 ww. 0 230 0 1 146 Maximize x + 5y-7z subject to the listed constraints. x+y+z≤ 146 7x +z≤ 230 9x + 13y ≤146 x20, y ≥0, z 20 0
For the linear programming problem to the right, (a) Set up the simplex tableau. (b) Determine the particular solution corresponding to the initial tableau. (a) Set up the simplex tableau. X= X u 1 0 COLL#] 0 0 (b) Determine the particular solution corresponding to the initial tableau. x=y=₁z=₁ u=146, v=w= M=0. 9 - 1 y 0 -5 Z 1 1 0 V 0 1 0 0 W 0 0 1 0 M 0 ww. 0 230 0 1 146 Maximize x + 5y-7z subject to the listed constraints. x+y+z≤ 146 7x +z≤ 230 9x + 13y ≤146 x20, y ≥0, z 20 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The exercise involves solving a linear programming problem using the simplex method. The goal is to maximize the function \( x + 5y - 7z \) subject to the following constraints:
1. \( x + y + z \leq 146 \)
2. \( 7x - z \leq 230 \)
3. \( 9x + 13y \leq 146 \)
4. \( x \geq 0, y \geq 0, z \geq 0 \)
### Steps:
**(a) Set up the simplex tableau:**
The initial simplex tableau is structured as follows:
\[
\begin{array}{cccccccc}
& x & y & z & u & v & w & M \\
\hline
& 1 & 1 & 1 & 1 & 0 & 0 & 0 & | & 230 \\
& 7 & 0 & -1 & 0 & 1 & 0 & 0 & | & 146 \\
& 9 & 13 & 0 & 0 & 0 & 1 & 0 & | & 0 \\
\hline
& -1 & -5 & \text{\tiny\square} & 0 & 0 & 0 & 1 & | & 0 \\
\end{array}
\]
The columns represent the variables \(x\), \(y\), \(z\), and the slack variables \(u\), \(v\), \(w\). The matrix on the right after the bar (\(|\)) indicates the constraints' constants.
**(b) Determine the particular solution corresponding to the initial tableau:**
The solution at the initial tableau is as follows:
\[
x = \text{\tiny\square}, \quad y = \text{\tiny\square}, \quad z = \text{\tiny\square}, \quad u = 146, \quad v = \text{\tiny\square}, \quad w = \text{\tiny\square}, \quad M = 0.
\]
This setup and initial solution form the starting point for applying the simplex method to find the optimal solution to the linear programming problem. The blanks (\(\text{\tiny\square}\)) represent values to be determined through further calculations.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4726056b-a0d8-4167-a534-8f03670a441a%2Ff02e822f-7c73-49d5-95d9-03f874936ea0%2Fdl2dwk_processed.png&w=3840&q=75)
Transcribed Image Text:The exercise involves solving a linear programming problem using the simplex method. The goal is to maximize the function \( x + 5y - 7z \) subject to the following constraints:
1. \( x + y + z \leq 146 \)
2. \( 7x - z \leq 230 \)
3. \( 9x + 13y \leq 146 \)
4. \( x \geq 0, y \geq 0, z \geq 0 \)
### Steps:
**(a) Set up the simplex tableau:**
The initial simplex tableau is structured as follows:
\[
\begin{array}{cccccccc}
& x & y & z & u & v & w & M \\
\hline
& 1 & 1 & 1 & 1 & 0 & 0 & 0 & | & 230 \\
& 7 & 0 & -1 & 0 & 1 & 0 & 0 & | & 146 \\
& 9 & 13 & 0 & 0 & 0 & 1 & 0 & | & 0 \\
\hline
& -1 & -5 & \text{\tiny\square} & 0 & 0 & 0 & 1 & | & 0 \\
\end{array}
\]
The columns represent the variables \(x\), \(y\), \(z\), and the slack variables \(u\), \(v\), \(w\). The matrix on the right after the bar (\(|\)) indicates the constraints' constants.
**(b) Determine the particular solution corresponding to the initial tableau:**
The solution at the initial tableau is as follows:
\[
x = \text{\tiny\square}, \quad y = \text{\tiny\square}, \quad z = \text{\tiny\square}, \quad u = 146, \quad v = \text{\tiny\square}, \quad w = \text{\tiny\square}, \quad M = 0.
\]
This setup and initial solution form the starting point for applying the simplex method to find the optimal solution to the linear programming problem. The blanks (\(\text{\tiny\square}\)) represent values to be determined through further calculations.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)