For the linear programming problem to the right, (a) Set up the simplex tableau. (b) Determine the particular solution corresponding to the initial tableau. (a) Set up the simplex tableau. X= X u 1 0 COLL#] 0 0 (b) Determine the particular solution corresponding to the initial tableau. x=y=₁z=₁ u=146, v=w= M=0. 9 - 1 y 0 -5 Z 1 1 0 V 0 1 0 0 W 0 0 1 0 M 0 ww. 0 230 0 1 146 Maximize x + 5y-7z subject to the listed constraints. x+y+z≤ 146 7x +z≤ 230 9x + 13y ≤146 x20, y ≥0, z 20 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The exercise involves solving a linear programming problem using the simplex method. The goal is to maximize the function \( x + 5y - 7z \) subject to the following constraints:

1. \( x + y + z \leq 146 \)
2. \( 7x - z \leq 230 \)
3. \( 9x + 13y \leq 146 \)
4. \( x \geq 0, y \geq 0, z \geq 0 \)

### Steps:

**(a) Set up the simplex tableau:**

The initial simplex tableau is structured as follows:

\[
\begin{array}{cccccccc}
 & x & y & z & u & v & w & M \\
\hline
 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & | & 230 \\
 & 7 & 0 & -1 & 0 & 1 & 0 & 0 & | & 146 \\
 & 9 & 13 & 0 & 0 & 0 & 1 & 0 & | & 0 \\
\hline
 & -1 & -5 & \text{\tiny\square} & 0 & 0 & 0 & 1 & | & 0 \\
\end{array}
\]

The columns represent the variables \(x\), \(y\), \(z\), and the slack variables \(u\), \(v\), \(w\). The matrix on the right after the bar (\(|\)) indicates the constraints' constants.

**(b) Determine the particular solution corresponding to the initial tableau:**

The solution at the initial tableau is as follows:

\[
x = \text{\tiny\square}, \quad y = \text{\tiny\square}, \quad z = \text{\tiny\square}, \quad u = 146, \quad v = \text{\tiny\square}, \quad w = \text{\tiny\square}, \quad M = 0.
\]

This setup and initial solution form the starting point for applying the simplex method to find the optimal solution to the linear programming problem. The blanks (\(\text{\tiny\square}\)) represent values to be determined through further calculations.
Transcribed Image Text:The exercise involves solving a linear programming problem using the simplex method. The goal is to maximize the function \( x + 5y - 7z \) subject to the following constraints: 1. \( x + y + z \leq 146 \) 2. \( 7x - z \leq 230 \) 3. \( 9x + 13y \leq 146 \) 4. \( x \geq 0, y \geq 0, z \geq 0 \) ### Steps: **(a) Set up the simplex tableau:** The initial simplex tableau is structured as follows: \[ \begin{array}{cccccccc} & x & y & z & u & v & w & M \\ \hline & 1 & 1 & 1 & 1 & 0 & 0 & 0 & | & 230 \\ & 7 & 0 & -1 & 0 & 1 & 0 & 0 & | & 146 \\ & 9 & 13 & 0 & 0 & 0 & 1 & 0 & | & 0 \\ \hline & -1 & -5 & \text{\tiny\square} & 0 & 0 & 0 & 1 & | & 0 \\ \end{array} \] The columns represent the variables \(x\), \(y\), \(z\), and the slack variables \(u\), \(v\), \(w\). The matrix on the right after the bar (\(|\)) indicates the constraints' constants. **(b) Determine the particular solution corresponding to the initial tableau:** The solution at the initial tableau is as follows: \[ x = \text{\tiny\square}, \quad y = \text{\tiny\square}, \quad z = \text{\tiny\square}, \quad u = 146, \quad v = \text{\tiny\square}, \quad w = \text{\tiny\square}, \quad M = 0. \] This setup and initial solution form the starting point for applying the simplex method to find the optimal solution to the linear programming problem. The blanks (\(\text{\tiny\square}\)) represent values to be determined through further calculations.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,