For Matrix A, find a basis for the eigenspace corresponding to λ = 3. 4 A = 3 0 0 2 2 - - 1 3 5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem:**

For Matrix \( A \), find a basis for the eigenspace corresponding to \( \lambda = 3 \).

\[ A = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix} \]

**Solution:**

1. **Subtract \(\lambda I\) from \(A\):**

   Here, \( \lambda = 3 \) and \( I \) is the identity matrix of the same dimension as \( A \).

   \[ 3I = 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]

   \[ A - 3I = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix} \]

2. **Set up the system of equations:**

   The matrix above represents the system \((A - 3I)x = 0\).

   \[ \begin{bmatrix} 1 & 0 & -1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

3. **Solve the system:**

   Reduce the matrix to row echelon form:

   Step 1: Swap \( R2 \) and \( R1 \):

   \[ \begin{bmatrix} 1 &
Transcribed Image Text:**Problem:** For Matrix \( A \), find a basis for the eigenspace corresponding to \( \lambda = 3 \). \[ A = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix} \] **Solution:** 1. **Subtract \(\lambda I\) from \(A\):** Here, \( \lambda = 3 \) and \( I \) is the identity matrix of the same dimension as \( A \). \[ 3I = 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \] \[ A - 3I = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix} \] 2. **Set up the system of equations:** The matrix above represents the system \((A - 3I)x = 0\). \[ \begin{bmatrix} 1 & 0 & -1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] 3. **Solve the system:** Reduce the matrix to row echelon form: Step 1: Swap \( R2 \) and \( R1 \): \[ \begin{bmatrix} 1 &
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,