for Bernoulli (p) distribution, the MLE estimator is sufficient for the parameter p; p=i
for Bernoulli (p) distribution, the MLE estimator is sufficient for the parameter p; p=i
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![Exercise 1
In lecture (Mon 1/30), we showed that
for Bernoulli (p) distribution, the MLE estimator
p=ī
is sufficient for the parameter p;
• for Uniform([a, b]), the MLE estimators
• N(μ,0²)
ô =! :=min(T ,xn), b = Yn := max(x₁,...,xn)
are jointly sufficient for the parameters a, b .
In this exercise, you will deduce similar results for the following four distributions:
Exp(X)
• Geometric (p)
Poisson(X)
(i) For each of these four distributions, write down their likelihood functions. (Hint: the
log-likelihood functions for these distributions were computed in previous lecture and
homework.)
(ii) Use the Fisher-Neyman factorization theorem to show that is a sufficient statistic
for each of the first three distributions.
(iii) Show that 1/2 is also a sufficient statistic for each of these three distributions.
(iv) Use the Fisher-Neyman factorization theorem to show that I, v are a pair of jointly
sufficient statistics for N(μ,0²).
(v) Show that I, s² are also a pair of jointly sufficient statistics for N(,0²). (Hint: relate
s² to v.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F04625ac1-43ff-4999-b93a-55388fc0c5e2%2F386e8146-fd72-4f6d-9ced-050d611344d6%2Fumvfxyy_processed.png&w=3840&q=75)
Transcribed Image Text:Exercise 1
In lecture (Mon 1/30), we showed that
for Bernoulli (p) distribution, the MLE estimator
p=ī
is sufficient for the parameter p;
• for Uniform([a, b]), the MLE estimators
• N(μ,0²)
ô =! :=min(T ,xn), b = Yn := max(x₁,...,xn)
are jointly sufficient for the parameters a, b .
In this exercise, you will deduce similar results for the following four distributions:
Exp(X)
• Geometric (p)
Poisson(X)
(i) For each of these four distributions, write down their likelihood functions. (Hint: the
log-likelihood functions for these distributions were computed in previous lecture and
homework.)
(ii) Use the Fisher-Neyman factorization theorem to show that is a sufficient statistic
for each of the first three distributions.
(iii) Show that 1/2 is also a sufficient statistic for each of these three distributions.
(iv) Use the Fisher-Neyman factorization theorem to show that I, v are a pair of jointly
sufficient statistics for N(μ,0²).
(v) Show that I, s² are also a pair of jointly sufficient statistics for N(,0²). (Hint: relate
s² to v.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman