Find the unit tangent vector for the parameterized curve: r(t) = 2ti + 2cos tj - 2 sint k

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter9: Systems Of Equations And Inequalities
Section: Chapter Questions
Problem 39RE
icon
Related questions
Question
In the image below.
### Unit Tangent Vector for a Parameterized Curve

To find the unit tangent vector for the parameterized curve, follow these steps:

Given the vector function: 

\[ \mathbf{r}(t) = 2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k} \]

1. **Compute the Derivative of \(\mathbf{r}(t)\)**

   Find \(\mathbf{r}'(t)\), which is the derivative of \(\mathbf{r}(t)\) with respect to \(t\):

   \[
   \mathbf{r}'(t) = \frac{d}{dt} (2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k})
   \]

   This yields:

   \[
   \mathbf{r}'(t) = 2\mathbf{i} - 2\sin t \mathbf{j} - 2\cos t \mathbf{k}
   \]

2. **Compute the Magnitude of \(\mathbf{r}'(t)\)**

   Find the magnitude \(|\mathbf{r}'(t)|\):

   \[
   |\mathbf{r}'(t)| = \sqrt{(2)^2 + (-2\sin t)^2 + (-2\cos t)^2}
   \]

   Simplify inside the square root:

   \[
   |\mathbf{r}'(t)| = \sqrt{4 + 4\sin^2 t + 4\cos^2 t}
   \]

   Using the Pythagorean identity \(\sin^2 t + \cos^2 t = 1\):

   \[
   |\mathbf{r}'(t)| = \sqrt{4 + 4(1)} = \sqrt{8} = 2\sqrt{2}
   \]

3. **Compute the Unit Tangent Vector**

   The unit tangent vector \(\mathbf{T}(t)\) is given by:

   \[
   \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}
   \]

   Substitute \(\mathbf{r}'(t)\) and \(|\mathbf{r}'(t)|\):

   \[
   \mathbf
Transcribed Image Text:### Unit Tangent Vector for a Parameterized Curve To find the unit tangent vector for the parameterized curve, follow these steps: Given the vector function: \[ \mathbf{r}(t) = 2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k} \] 1. **Compute the Derivative of \(\mathbf{r}(t)\)** Find \(\mathbf{r}'(t)\), which is the derivative of \(\mathbf{r}(t)\) with respect to \(t\): \[ \mathbf{r}'(t) = \frac{d}{dt} (2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k}) \] This yields: \[ \mathbf{r}'(t) = 2\mathbf{i} - 2\sin t \mathbf{j} - 2\cos t \mathbf{k} \] 2. **Compute the Magnitude of \(\mathbf{r}'(t)\)** Find the magnitude \(|\mathbf{r}'(t)|\): \[ |\mathbf{r}'(t)| = \sqrt{(2)^2 + (-2\sin t)^2 + (-2\cos t)^2} \] Simplify inside the square root: \[ |\mathbf{r}'(t)| = \sqrt{4 + 4\sin^2 t + 4\cos^2 t} \] Using the Pythagorean identity \(\sin^2 t + \cos^2 t = 1\): \[ |\mathbf{r}'(t)| = \sqrt{4 + 4(1)} = \sqrt{8} = 2\sqrt{2} \] 3. **Compute the Unit Tangent Vector** The unit tangent vector \(\mathbf{T}(t)\) is given by: \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \] Substitute \(\mathbf{r}'(t)\) and \(|\mathbf{r}'(t)|\): \[ \mathbf
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage