Find the unit tangent vector for the parameterized curve: r(t) = 2ti + 2cos tj - 2 sint k
Find the unit tangent vector for the parameterized curve: r(t) = 2ti + 2cos tj - 2 sint k
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
In the image below.
![### Unit Tangent Vector for a Parameterized Curve
To find the unit tangent vector for the parameterized curve, follow these steps:
Given the vector function:
\[ \mathbf{r}(t) = 2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k} \]
1. **Compute the Derivative of \(\mathbf{r}(t)\)**
Find \(\mathbf{r}'(t)\), which is the derivative of \(\mathbf{r}(t)\) with respect to \(t\):
\[
\mathbf{r}'(t) = \frac{d}{dt} (2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k})
\]
This yields:
\[
\mathbf{r}'(t) = 2\mathbf{i} - 2\sin t \mathbf{j} - 2\cos t \mathbf{k}
\]
2. **Compute the Magnitude of \(\mathbf{r}'(t)\)**
Find the magnitude \(|\mathbf{r}'(t)|\):
\[
|\mathbf{r}'(t)| = \sqrt{(2)^2 + (-2\sin t)^2 + (-2\cos t)^2}
\]
Simplify inside the square root:
\[
|\mathbf{r}'(t)| = \sqrt{4 + 4\sin^2 t + 4\cos^2 t}
\]
Using the Pythagorean identity \(\sin^2 t + \cos^2 t = 1\):
\[
|\mathbf{r}'(t)| = \sqrt{4 + 4(1)} = \sqrt{8} = 2\sqrt{2}
\]
3. **Compute the Unit Tangent Vector**
The unit tangent vector \(\mathbf{T}(t)\) is given by:
\[
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}
\]
Substitute \(\mathbf{r}'(t)\) and \(|\mathbf{r}'(t)|\):
\[
\mathbf](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F58097f1d-9f7f-481d-be94-f210527e0168%2F3e761c52-c59f-4191-8e38-d2d3fce7a412%2Fi684cts_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Unit Tangent Vector for a Parameterized Curve
To find the unit tangent vector for the parameterized curve, follow these steps:
Given the vector function:
\[ \mathbf{r}(t) = 2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k} \]
1. **Compute the Derivative of \(\mathbf{r}(t)\)**
Find \(\mathbf{r}'(t)\), which is the derivative of \(\mathbf{r}(t)\) with respect to \(t\):
\[
\mathbf{r}'(t) = \frac{d}{dt} (2t\mathbf{i} + 2\cos t \mathbf{j} - 2\sin t \mathbf{k})
\]
This yields:
\[
\mathbf{r}'(t) = 2\mathbf{i} - 2\sin t \mathbf{j} - 2\cos t \mathbf{k}
\]
2. **Compute the Magnitude of \(\mathbf{r}'(t)\)**
Find the magnitude \(|\mathbf{r}'(t)|\):
\[
|\mathbf{r}'(t)| = \sqrt{(2)^2 + (-2\sin t)^2 + (-2\cos t)^2}
\]
Simplify inside the square root:
\[
|\mathbf{r}'(t)| = \sqrt{4 + 4\sin^2 t + 4\cos^2 t}
\]
Using the Pythagorean identity \(\sin^2 t + \cos^2 t = 1\):
\[
|\mathbf{r}'(t)| = \sqrt{4 + 4(1)} = \sqrt{8} = 2\sqrt{2}
\]
3. **Compute the Unit Tangent Vector**
The unit tangent vector \(\mathbf{T}(t)\) is given by:
\[
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}
\]
Substitute \(\mathbf{r}'(t)\) and \(|\mathbf{r}'(t)|\):
\[
\mathbf
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)