Find the probability that a randomly selected adult has an IQ between 85 and 125 and type an integer or decimal rounded to four decimal places. A. 0.6139 B. 0.5763 C. 0.4177 D. 0.8176

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that adults have IQ scores that are normally distributed with a mean of mu = 105 and a standard deviation sigma = 15. Find the probability that a randomly selected adult has an IQ between 85 and 125 and type an integer or decimal rounded to four decimal places. A. 0.6139 B. 0.5763 C. 0.4177 D. 0.8176
NEGATIVE Z Scores
z
Z
-3.50
and
lower
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
<-2.3
-2.2
-21
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
<-0.3
-0.2
-0.1
-0.0
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.00
0001
0003
.0005
0007
0010
0013
0019
0026
0035
.0047
.0062
.0082
.0107
0139
0179
0228
.0287
.0359
0446
0548
.0668
0808
0968
1151
1357
1587
1841
2119
2420
2743
3085
3446
3821
4207
4602
5000
.01
0003
0005
0007
0009
0013
0018
0025
0034
0045
0060
0080
0104
0136
0174
0222
0281
.0351
0436
0537
0655
0793
0951
1131
1335
1562
1814
2090
2389
2709
3050
3409
3783
4168
4562
4960
02
0003
0005
0006
0009
.0013
0018
.0024
0033
0044
0059
.0078
0102
0132
0170
0217
0274
.0344
0427
0526
0643
0778
0934
1112
1314
1539
1788
2061
2358
2676
3015
3372
3745
4129
4522
14920
.03
0003
0004
0006
0009
0012
0017
.0023
.0032
,0043
0057
0075
.0099
0129
0166
0212
0268
0336
0418
0516
0630
0764
0918
1093
1292
1515
1762
2033
2327
2643
2981
3336
3707
4090
4483
4880
04
0003
0004
0006
0008
0012
0016
0023
0031
0041
0055
0073
0096
0125
0162
0207
0262
0329
0409
0505
0618
0749
0901
1075
1271
1492
1736
2005
2296
2611
2946
3300
3669
4052
4443
4840
NOTE: For values of z below -3.49, use 0.0001 for the area.
"Use these common values that result from interpolation:
z score
Area
-1.645 0.0500
-2.575 0.0050
.05
0003
.0004
.0006
0008
0011
0016
0022
0030
0040
.0054
.0071
0094
0122
0158
0202
0256
0322
0401
0495
A0606
0735
0885
1056
1251
1469
1711
1977
2266
2578
2912
3264
3632
4013
4404
4801
.06
0003
0004
0006
0008
0011
0015
0021
0029
0039
0052
.0069
0091
0119
0154
0197
0250
0314
0392
0485
0594
0721
0869
1038
1230
1446
1685
1949
2236
2546
2877
3228
3594
3974
4364
4761
07
0003
0004
0005
0008
0011
0015
.0021
0028
0038
0051
0068
.0089
0116
0150
.0192
.0244
.0307
0384
0475
0582
0708
0853
1020
1210
1423
1660
1922
2206
2514
2843
3192
3557
3936
4325
4721
08
0003
0004
0005
0007
0010
0014
.0020
0027
0037
0049
0066
0087
0113
0146
.0188
0239
0301
.0375
0465
.0571
0694
0838
1003
1190
1401
1635
1894
2177
2483
2810
3156
TOTOO
3520
3897
4286
4681
.09
0002
0003
0005
0007
0010
.0014
0019
0026
0036
.0048
0064
.0084
0110
0143
.0183
0233
.0294
0367
0455
0559
0681
0823
0985
1170
1379
1611
1867
2148
2451
2776
3121
13483
3859
4247
4641
Transcribed Image Text:NEGATIVE Z Scores z Z -3.50 and lower -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 <-2.3 -2.2 -21 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 <-0.3 -0.2 -0.1 -0.0 Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 0001 0003 .0005 0007 0010 0013 0019 0026 0035 .0047 .0062 .0082 .0107 0139 0179 0228 .0287 .0359 0446 0548 .0668 0808 0968 1151 1357 1587 1841 2119 2420 2743 3085 3446 3821 4207 4602 5000 .01 0003 0005 0007 0009 0013 0018 0025 0034 0045 0060 0080 0104 0136 0174 0222 0281 .0351 0436 0537 0655 0793 0951 1131 1335 1562 1814 2090 2389 2709 3050 3409 3783 4168 4562 4960 02 0003 0005 0006 0009 .0013 0018 .0024 0033 0044 0059 .0078 0102 0132 0170 0217 0274 .0344 0427 0526 0643 0778 0934 1112 1314 1539 1788 2061 2358 2676 3015 3372 3745 4129 4522 14920 .03 0003 0004 0006 0009 0012 0017 .0023 .0032 ,0043 0057 0075 .0099 0129 0166 0212 0268 0336 0418 0516 0630 0764 0918 1093 1292 1515 1762 2033 2327 2643 2981 3336 3707 4090 4483 4880 04 0003 0004 0006 0008 0012 0016 0023 0031 0041 0055 0073 0096 0125 0162 0207 0262 0329 0409 0505 0618 0749 0901 1075 1271 1492 1736 2005 2296 2611 2946 3300 3669 4052 4443 4840 NOTE: For values of z below -3.49, use 0.0001 for the area. "Use these common values that result from interpolation: z score Area -1.645 0.0500 -2.575 0.0050 .05 0003 .0004 .0006 0008 0011 0016 0022 0030 0040 .0054 .0071 0094 0122 0158 0202 0256 0322 0401 0495 A0606 0735 0885 1056 1251 1469 1711 1977 2266 2578 2912 3264 3632 4013 4404 4801 .06 0003 0004 0006 0008 0011 0015 0021 0029 0039 0052 .0069 0091 0119 0154 0197 0250 0314 0392 0485 0594 0721 0869 1038 1230 1446 1685 1949 2236 2546 2877 3228 3594 3974 4364 4761 07 0003 0004 0005 0008 0011 0015 .0021 0028 0038 0051 0068 .0089 0116 0150 .0192 .0244 .0307 0384 0475 0582 0708 0853 1020 1210 1423 1660 1922 2206 2514 2843 3192 3557 3936 4325 4721 08 0003 0004 0005 0007 0010 0014 .0020 0027 0037 0049 0066 0087 0113 0146 .0188 0239 0301 .0375 0465 .0571 0694 0838 1003 1190 1401 1635 1894 2177 2483 2810 3156 TOTOO 3520 3897 4286 4681 .09 0002 0003 0005 0007 0010 .0014 0019 0026 0036 .0048 0064 .0084 0110 0143 .0183 0233 .0294 0367 0455 0559 0681 0823 0985 1170 1379 1611 1867 2148 2451 2776 3121 13483 3859 4247 4641
Z
{ . . . . º 6 & & × 6 B - & 3 - 6 6 & ជូ 6 ច ន & i = 6 & & ដំ ៖ ទ ន ទ ន មោះ
0.6
0.8
1.2
1.4
1.7
1.8
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.50
and up
0
.00
Standard Normal (2) Distribution: Cumulative Area from the LEFT
5000
5398
5793
.6179
6554
6915
7257
7580
z
$7881
8159
8413
8643
8849
.9032
9192
9332
9452
9554
9641
9713
9772
.9821
9861
9893
.9918
9938
9953
.9965
9974
9981
9987
9990
9993
9995
9997
9999
1.01
5040
5438
5832
6217
6591
6950
7291
.7611
7910
8186
8438
8665
8869
9049
9207
9345
9463
.9564
.9649
9719
.9778
.9826
9864
.9896
9920
9940
.9955
.9966
.9975
.9982
9987
9991
9993
9995
9997
02
5080
5478
5871
6255
6628
6985
7324
7642
7939
8212
8461
8686
8888
.9066
9222
9357
9474
9573
.9656
9726
.9783
.9830
9868
.9898
9922
9941
9956
9967
.9976
9982
9987
9991
9994
9995
9997
POSITIVE Z Scores
03
5120
5517
5910
6293
6664
7019
7357
7673
7967
8238
8485
8708
8907
.9082
.9236
9370
9484
9582
.9664
.9732
9788
.9834
.9871
.9901
.9925
9943
.9957
.9968
9977
9983
9988
.9991
9994
9996
9997
04
5160
5557
5948
6331
.6700
7054
7389
7704
7995
8264
.9927
9945
9959
.9969
.9977
.9984
9988
9992
9994
9996
9997
05
7422
7734
8023
8289
8508
.8531
8729
8749
8925
8944
9099
9115
9251
9265
9382
9394
9495 C 9505
19591 A9599
9671
9738
.9793
9838
.9875
9904
NOTE: For values of z above 3.49, use 0.9999 for the area.
"Use these common values that result from interpolation:
z score
Area
1.645
0.9500
2.575
0.9950
5199
5596
5987
6368
6736
7088
9678
9744
.9798
9842
.9878
.9906
9929
9946
9960
.9970
.9978
9984
.9989
9992
.9994
9996
.9997
06
5239
5636
6026
16406
6772
17123
7454
7764
8051
.8315
8554
8770
8962
9131
.9279
.9406
9515
9608
.9686
.9750
.9803
.9846
.9881
.9909
.9931
9948
.9961
.9971
.9979
9985
9989
9992
9994
9996
.9997
07
5279
5675
6064
5319
5714
6103
6480
6844
7190
7517
7823
8106
.8365
8599
8810
.8997
9162
9306
9429
9535
.9625
.9699
9761
9812
.9854
.9887
9913
9932
9934
9949 . .9951
99629963
6443
16808
17157
7486
7794
8078
8340
.8577
8790
8980
.9147
9292
9418
9525
9616
9693
9756
.9808
9850
.9884
.9911
08
9972
9979
9985
9989
9992
9995
9996
9997
9973
9980
9986
9990
9993
9995
9996
9997
09
5359
5753
6141
6517
6879
7224
7549
7852
8133
8389
8621
8830
9015
9177
.9319
9441
9545
9633
9706
9767
.9817
9857
.9890
9916
.9936
9952
9964
9974
9981
9986
9990
9993
9995
9997
9998
Common Critical Value
Confidence | Critical
Level
Value
0.90
1.645
0.95
1.96
0.99
2.575
Transcribed Image Text:Z { . . . . º 6 & & × 6 B - & 3 - 6 6 & ជូ 6 ច ន & i = 6 & & ដំ ៖ ទ ន ទ ន មោះ 0.6 0.8 1.2 1.4 1.7 1.8 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.50 and up 0 .00 Standard Normal (2) Distribution: Cumulative Area from the LEFT 5000 5398 5793 .6179 6554 6915 7257 7580 z $7881 8159 8413 8643 8849 .9032 9192 9332 9452 9554 9641 9713 9772 .9821 9861 9893 .9918 9938 9953 .9965 9974 9981 9987 9990 9993 9995 9997 9999 1.01 5040 5438 5832 6217 6591 6950 7291 .7611 7910 8186 8438 8665 8869 9049 9207 9345 9463 .9564 .9649 9719 .9778 .9826 9864 .9896 9920 9940 .9955 .9966 .9975 .9982 9987 9991 9993 9995 9997 02 5080 5478 5871 6255 6628 6985 7324 7642 7939 8212 8461 8686 8888 .9066 9222 9357 9474 9573 .9656 9726 .9783 .9830 9868 .9898 9922 9941 9956 9967 .9976 9982 9987 9991 9994 9995 9997 POSITIVE Z Scores 03 5120 5517 5910 6293 6664 7019 7357 7673 7967 8238 8485 8708 8907 .9082 .9236 9370 9484 9582 .9664 .9732 9788 .9834 .9871 .9901 .9925 9943 .9957 .9968 9977 9983 9988 .9991 9994 9996 9997 04 5160 5557 5948 6331 .6700 7054 7389 7704 7995 8264 .9927 9945 9959 .9969 .9977 .9984 9988 9992 9994 9996 9997 05 7422 7734 8023 8289 8508 .8531 8729 8749 8925 8944 9099 9115 9251 9265 9382 9394 9495 C 9505 19591 A9599 9671 9738 .9793 9838 .9875 9904 NOTE: For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: z score Area 1.645 0.9500 2.575 0.9950 5199 5596 5987 6368 6736 7088 9678 9744 .9798 9842 .9878 .9906 9929 9946 9960 .9970 .9978 9984 .9989 9992 .9994 9996 .9997 06 5239 5636 6026 16406 6772 17123 7454 7764 8051 .8315 8554 8770 8962 9131 .9279 .9406 9515 9608 .9686 .9750 .9803 .9846 .9881 .9909 .9931 9948 .9961 .9971 .9979 9985 9989 9992 9994 9996 .9997 07 5279 5675 6064 5319 5714 6103 6480 6844 7190 7517 7823 8106 .8365 8599 8810 .8997 9162 9306 9429 9535 .9625 .9699 9761 9812 .9854 .9887 9913 9932 9934 9949 . .9951 99629963 6443 16808 17157 7486 7794 8078 8340 .8577 8790 8980 .9147 9292 9418 9525 9616 9693 9756 .9808 9850 .9884 .9911 08 9972 9979 9985 9989 9992 9995 9996 9997 9973 9980 9986 9990 9993 9995 9996 9997 09 5359 5753 6141 6517 6879 7224 7549 7852 8133 8389 8621 8830 9015 9177 .9319 9441 9545 9633 9706 9767 .9817 9857 .9890 9916 .9936 9952 9964 9974 9981 9986 9990 9993 9995 9997 9998 Common Critical Value Confidence | Critical Level Value 0.90 1.645 0.95 1.96 0.99 2.575
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman