Find the probability that a randomly selected adult has an IQ between 85 and 125 and type an integer or decimal rounded to four decimal places. A. 0.6139 B. 0.5763 C. 0.4177 D. 0.8176
Find the probability that a randomly selected adult has an IQ between 85 and 125 and type an integer or decimal rounded to four decimal places. A. 0.6139 B. 0.5763 C. 0.4177 D. 0.8176
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Assume that adults have IQ scores that are normally distributed with a mean of mu = 105 and a standard deviation
sigma = 15. Find the probability that a randomly selected adult has an IQ between 85 and 125 and type an integer
or decimal rounded to four decimal places.
A. 0.6139
B. 0.5763
C. 0.4177
D. 0.8176

Transcribed Image Text:NEGATIVE Z Scores
z
Z
-3.50
and
lower
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
<-2.3
-2.2
-21
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
<-0.3
-0.2
-0.1
-0.0
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.00
0001
0003
.0005
0007
0010
0013
0019
0026
0035
.0047
.0062
.0082
.0107
0139
0179
0228
.0287
.0359
0446
0548
.0668
0808
0968
1151
1357
1587
1841
2119
2420
2743
3085
3446
3821
4207
4602
5000
.01
0003
0005
0007
0009
0013
0018
0025
0034
0045
0060
0080
0104
0136
0174
0222
0281
.0351
0436
0537
0655
0793
0951
1131
1335
1562
1814
2090
2389
2709
3050
3409
3783
4168
4562
4960
02
0003
0005
0006
0009
.0013
0018
.0024
0033
0044
0059
.0078
0102
0132
0170
0217
0274
.0344
0427
0526
0643
0778
0934
1112
1314
1539
1788
2061
2358
2676
3015
3372
3745
4129
4522
14920
.03
0003
0004
0006
0009
0012
0017
.0023
.0032
,0043
0057
0075
.0099
0129
0166
0212
0268
0336
0418
0516
0630
0764
0918
1093
1292
1515
1762
2033
2327
2643
2981
3336
3707
4090
4483
4880
04
0003
0004
0006
0008
0012
0016
0023
0031
0041
0055
0073
0096
0125
0162
0207
0262
0329
0409
0505
0618
0749
0901
1075
1271
1492
1736
2005
2296
2611
2946
3300
3669
4052
4443
4840
NOTE: For values of z below -3.49, use 0.0001 for the area.
"Use these common values that result from interpolation:
z score
Area
-1.645 0.0500
-2.575 0.0050
.05
0003
.0004
.0006
0008
0011
0016
0022
0030
0040
.0054
.0071
0094
0122
0158
0202
0256
0322
0401
0495
A0606
0735
0885
1056
1251
1469
1711
1977
2266
2578
2912
3264
3632
4013
4404
4801
.06
0003
0004
0006
0008
0011
0015
0021
0029
0039
0052
.0069
0091
0119
0154
0197
0250
0314
0392
0485
0594
0721
0869
1038
1230
1446
1685
1949
2236
2546
2877
3228
3594
3974
4364
4761
07
0003
0004
0005
0008
0011
0015
.0021
0028
0038
0051
0068
.0089
0116
0150
.0192
.0244
.0307
0384
0475
0582
0708
0853
1020
1210
1423
1660
1922
2206
2514
2843
3192
3557
3936
4325
4721
08
0003
0004
0005
0007
0010
0014
.0020
0027
0037
0049
0066
0087
0113
0146
.0188
0239
0301
.0375
0465
.0571
0694
0838
1003
1190
1401
1635
1894
2177
2483
2810
3156
TOTOO
3520
3897
4286
4681
.09
0002
0003
0005
0007
0010
.0014
0019
0026
0036
.0048
0064
.0084
0110
0143
.0183
0233
.0294
0367
0455
0559
0681
0823
0985
1170
1379
1611
1867
2148
2451
2776
3121
13483
3859
4247
4641

Transcribed Image Text:Z
{ . . . . º 6 & & × 6 B - & 3 - 6 6 & ជូ 6 ច ន & i = 6 & & ដំ ៖ ទ ន ទ ន មោះ
0.6
0.8
1.2
1.4
1.7
1.8
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.50
and up
0
.00
Standard Normal (2) Distribution: Cumulative Area from the LEFT
5000
5398
5793
.6179
6554
6915
7257
7580
z
$7881
8159
8413
8643
8849
.9032
9192
9332
9452
9554
9641
9713
9772
.9821
9861
9893
.9918
9938
9953
.9965
9974
9981
9987
9990
9993
9995
9997
9999
1.01
5040
5438
5832
6217
6591
6950
7291
.7611
7910
8186
8438
8665
8869
9049
9207
9345
9463
.9564
.9649
9719
.9778
.9826
9864
.9896
9920
9940
.9955
.9966
.9975
.9982
9987
9991
9993
9995
9997
02
5080
5478
5871
6255
6628
6985
7324
7642
7939
8212
8461
8686
8888
.9066
9222
9357
9474
9573
.9656
9726
.9783
.9830
9868
.9898
9922
9941
9956
9967
.9976
9982
9987
9991
9994
9995
9997
POSITIVE Z Scores
03
5120
5517
5910
6293
6664
7019
7357
7673
7967
8238
8485
8708
8907
.9082
.9236
9370
9484
9582
.9664
.9732
9788
.9834
.9871
.9901
.9925
9943
.9957
.9968
9977
9983
9988
.9991
9994
9996
9997
04
5160
5557
5948
6331
.6700
7054
7389
7704
7995
8264
.9927
9945
9959
.9969
.9977
.9984
9988
9992
9994
9996
9997
05
7422
7734
8023
8289
8508
.8531
8729
8749
8925
8944
9099
9115
9251
9265
9382
9394
9495 C 9505
19591 A9599
9671
9738
.9793
9838
.9875
9904
NOTE: For values of z above 3.49, use 0.9999 for the area.
"Use these common values that result from interpolation:
z score
Area
1.645
0.9500
2.575
0.9950
5199
5596
5987
6368
6736
7088
9678
9744
.9798
9842
.9878
.9906
9929
9946
9960
.9970
.9978
9984
.9989
9992
.9994
9996
.9997
06
5239
5636
6026
16406
6772
17123
7454
7764
8051
.8315
8554
8770
8962
9131
.9279
.9406
9515
9608
.9686
.9750
.9803
.9846
.9881
.9909
.9931
9948
.9961
.9971
.9979
9985
9989
9992
9994
9996
.9997
07
5279
5675
6064
5319
5714
6103
6480
6844
7190
7517
7823
8106
.8365
8599
8810
.8997
9162
9306
9429
9535
.9625
.9699
9761
9812
.9854
.9887
9913
9932
9934
9949 . .9951
99629963
6443
16808
17157
7486
7794
8078
8340
.8577
8790
8980
.9147
9292
9418
9525
9616
9693
9756
.9808
9850
.9884
.9911
08
9972
9979
9985
9989
9992
9995
9996
9997
9973
9980
9986
9990
9993
9995
9996
9997
09
5359
5753
6141
6517
6879
7224
7549
7852
8133
8389
8621
8830
9015
9177
.9319
9441
9545
9633
9706
9767
.9817
9857
.9890
9916
.9936
9952
9964
9974
9981
9986
9990
9993
9995
9997
9998
Common Critical Value
Confidence | Critical
Level
Value
0.90
1.645
0.95
1.96
0.99
2.575
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images

Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman