Assume that adults have IQ scores that are normally distributed with a mean of μ = 105 and a standard deviation o=15. Find the probability that a randomly selected adult has an IQ less than 135. Click to view page 1 of the table. Click to view page 2 of the table. (Type an integer or decly selected adult has an IQ less than 135 is. or decimal rounded to four decimal places as needed.) The probabilit that a Standard Normal Table (Page 2) ENNEN5545555=5888ERERE: 26 Standard Normal (z) Distribution: Cumulative Area from the LEFT 08 .00 .01 POSITIVE z Scores 02 .03 I Standard Normal Table (Page 1) NEGATIVE z Scores 77777777777777777¶¶¶¶¶¶¶¶ Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 [ Print Done 21 ⠀⠀⠀⠀⠀

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that adults have IQ scores that are normally distributed with a mean of µ = 105 and a standard deviation = 15. Find the probability that a randomly selected adult has an IQ less than 135.
Click to view page 1 of the table. Click to view page 2 of the table.
The probability that a randomly selected adult has an IQ less than 135 is
(Type an integer or decimal rounded to four decimal places as needed.)
Standard Normal Table (Page 2)
Z
0.0
0,1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
822MH4SNR9N N N N N N M
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.3
56
2.5
2.8
3.0
3.1
3.2
3.3
3.4
3.50
0
.00
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.5000
.5398
.5793
.6179
.6554
.6915
.7257
.7580
.7881
.8159
.8413
.8643
.8849
.9032
.9192
.9332
9452
.9554
9641
9713
.9772
.9821
.9861
.9893
.9918
.9938
.9953
.9965
.9974
.9981
.9987
9990
Z
.9993
.9995
.9997
9999
.01
5040
5438
5832
.6217
.6591
.6950
.7291
.7611
7910
.8186
.8438
.8665
.8869
.9049
9207
9345
9463
.9564
.9649
.9719
.9778
.9826
9864
.9896
.9920
9940
.9955
.9966
.9975
.9982
.9987
.9991
.9993
.9995
.9997
.02
5080
5478
5871
.6255
6628
.6985
.7324
.7642
.7939
.8212
.8461
8686
8888
.9066
9222
9357
9474
.9573
.9656
.9726
.9783
.9830
9868
.9898
.9922
.9941
.9956
.9967
.9976
9982
9987
.9991
9994
.9995
9997
POSITIVE z Scores
.03
.5120
.5517
5910
.6293
6664
.7019
.7357
.7673
.7967
.8238
.8485
.8708
.8907
.9082
.9236
.9370
9484
.9582
.9664
.9732
9788
.9834
.9871
.9901
.9925
.9943
.9957
.9968
.9977
9983
9988
.9991
9994
.9996
.9997
.04
5160
.5557
.5948
.6331
.6700
.7054
.7389
.7704
.7995
.8264
.8508
.8729
.8925
.9099
.9251
.9382
.9495 *
.9591
.9671
.9738
.9793
.9838
.9875
.9904
.9927
.9945
.9959
.9969
.9977
.9984
.9988
.9992
.9994
.9996
.9997
.05
5199
5596
5987
.6368
.6736
.7088
7422
.7734
.8023
.8289
.8531
.8749
.8944
.9115
.9265
.9394
.9505
.9599
.9678
.9744
.9798
.9842
.9878
.9906
.9929
.9946
.9960
.9970
.9978
.9984
.9989
.9992
9994
.9996
.9997
.06
.5239
.5636
.6026
.6406
.6772
.7123
.7454
.7764
.8051
.8315
.8554
.8770
.8962
.9131
.9279
.9406
.9515
.9608
.9686
.9750
.9803
.9846
.9881
.9909
.9931
.9948
.9961
.9971
.9979
.9985
.9989
.9992
.9994
.9996
.9997
.07
5279
.5675
6064
.6443
.6808
.7157
.7486
.7794
8078
.8340
.8577
.8790
.8980
.9147
.9292
9418
9525
.9616
9693
.9756
.9808
.9850
.9884
.9911
.9932
.9949
.9962
.9972
9979
9985
.9989
9992
.9995
.9996
.9997
.08
5319
.5714
.6103
6480
6844
.7190
.7517
.7823
.8106
.8365
.8599
.8810
.8997
.9162
.9306
.9429
.9535
.9625
.9699
.9761
9812
.9854
.9887
.9913
.9934
.9951
.9963
9973
9980
.9986
.9990
.9993
9995
9996
.9997
.09
.5359
.5753
.6141
.6517
.6879
.7224
.7549
.7852
.8133
.8389
.8621
.8830
.9015
.9177
.9319
.9441
.9545
.9633
.9706
.9767
.9817
.9857
.9890
.9916
.9936
.9952
.9964
.9974
.9981
.9986
.9990
.9993
.9995
.9997
.9998
X
Standard Normal Table (Page 1)
NEGATIVE z Scores
Z
-3.50
and
lower
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
-0.0
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.00
.0001
.0003
.0005
,0007
.0010
.0013
.0019
.0026
.0035
.0047
.0062
.0082
.0107
.0139
.0179
.0228
.0287
.0359
0446
0548
.0668
.0808
0968
1151
1357
.1587
1841
.2119
.2420
2743
.3085
3446
3821
4207
.4602
.5000
.01
0003
.0005
.0007
.0009
.0013
.0018
.0025
0034
0045
0060
.0080
0104
0136
0174
0222
0281
.0351
0436
0537
0655
0793
0951
1131
1335
1562
1814
2090
2389
2709
.3050
.3409
.3783
4168
.4562
4960
02
.0003
.0005
.0006
.0009
0013
.0018
.0024
.0033
0044
.0059
.0078
.0102
.0132
0170
0217
0274
.0344
0427
0526
0643
0778
0934
1112
1314
1539
1788
2061
2358
2676
.3015
3372
.3745
4129
.4522
4920
.03
.0003
.0004
.0006
.0009
.0012
.0017
.0023
.0032
.0043
.0057
.0075
.0099
.0129
.0166
0212
.0268
.0336
0418
.0516
.0630
.0764
.0918
1093
1292
1515
1762
2033
2327
2643
2981
3336
.3707
4090
.4483
.4880
Print
.04
.05
.0016
0003 .0003
.0004 .0004
.0006 .0006
.0008 .0008
.0012 .0011
.0016
.0022
.0030
.0040
.0054
.0071
.0094
0023
.0031
.0041
0055
.0073
0096
.0125
.0122
.0158
0162
0207
.0202
0262
.0329
.0256
.0322
.0401
0409
0505
0618
0749
0901
1075
* .0495
.0606
.0735
.0885
1056
1251
.1469
1711
1977
.1271
1492
.1736
.2005
.2266
.2296
2611
2946
.2578
.2912
3300
.3669
4052
.4443
4840
.3264
3632
4013
.4404
.4801
Done
.06
.0003
.0004
.0006
.0008
.0011
.0015
.0021
.0029
.0039
0052
.0069
.0091
0119
0154
0197
0250
0314
0392
0485
0594
0721
.0869
1038
1230
1446
1685
1949
2236
2546
2877
3228
3594
3974
4364
4761
.07
.0003
.0004
.0005
.0008
.0011
.0015
.0021
.0028
.0038
.0051
.0068
.0089
.0116
0150
.0192
.0244
.0307
0384
0475
.0582
.0708
0853
1020
1210
1423
1660
1922
.2206
.2514
.2843
0
.3192
.3557
.3936
.4325
.4721
.08
0003
.0004
.0005
.0007
0010
.0014
.0020
0027
0037
* .0049
.0066
.0087
0113
0146
.0188
0239
.0301
.0375
0465
.0571
0694
0838
1003
1190
1401
1635
1894
2177
.2483
2810
.3156
3520
.3897
4286
4681
.09
.0002
.0003
,0005
.0007
.0010
.0014
.0019
.0026
0036
.0048
.0064
.0084
.0110
.0143
.0183
0233
.0294
.0367
0455
.0559
.0681
0823
0985
1170
.1379
1611
1867
.2148
.2451
.2776
.3121
.3483
3859
.4247
.4641
Transcribed Image Text:Assume that adults have IQ scores that are normally distributed with a mean of µ = 105 and a standard deviation = 15. Find the probability that a randomly selected adult has an IQ less than 135. Click to view page 1 of the table. Click to view page 2 of the table. The probability that a randomly selected adult has an IQ less than 135 is (Type an integer or decimal rounded to four decimal places as needed.) Standard Normal Table (Page 2) Z 0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 822MH4SNR9N N N N N N M 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.3 56 2.5 2.8 3.0 3.1 3.2 3.3 3.4 3.50 0 .00 Standard Normal (z) Distribution: Cumulative Area from the LEFT .5000 .5398 .5793 .6179 .6554 .6915 .7257 .7580 .7881 .8159 .8413 .8643 .8849 .9032 .9192 .9332 9452 .9554 9641 9713 .9772 .9821 .9861 .9893 .9918 .9938 .9953 .9965 .9974 .9981 .9987 9990 Z .9993 .9995 .9997 9999 .01 5040 5438 5832 .6217 .6591 .6950 .7291 .7611 7910 .8186 .8438 .8665 .8869 .9049 9207 9345 9463 .9564 .9649 .9719 .9778 .9826 9864 .9896 .9920 9940 .9955 .9966 .9975 .9982 .9987 .9991 .9993 .9995 .9997 .02 5080 5478 5871 .6255 6628 .6985 .7324 .7642 .7939 .8212 .8461 8686 8888 .9066 9222 9357 9474 .9573 .9656 .9726 .9783 .9830 9868 .9898 .9922 .9941 .9956 .9967 .9976 9982 9987 .9991 9994 .9995 9997 POSITIVE z Scores .03 .5120 .5517 5910 .6293 6664 .7019 .7357 .7673 .7967 .8238 .8485 .8708 .8907 .9082 .9236 .9370 9484 .9582 .9664 .9732 9788 .9834 .9871 .9901 .9925 .9943 .9957 .9968 .9977 9983 9988 .9991 9994 .9996 .9997 .04 5160 .5557 .5948 .6331 .6700 .7054 .7389 .7704 .7995 .8264 .8508 .8729 .8925 .9099 .9251 .9382 .9495 * .9591 .9671 .9738 .9793 .9838 .9875 .9904 .9927 .9945 .9959 .9969 .9977 .9984 .9988 .9992 .9994 .9996 .9997 .05 5199 5596 5987 .6368 .6736 .7088 7422 .7734 .8023 .8289 .8531 .8749 .8944 .9115 .9265 .9394 .9505 .9599 .9678 .9744 .9798 .9842 .9878 .9906 .9929 .9946 .9960 .9970 .9978 .9984 .9989 .9992 9994 .9996 .9997 .06 .5239 .5636 .6026 .6406 .6772 .7123 .7454 .7764 .8051 .8315 .8554 .8770 .8962 .9131 .9279 .9406 .9515 .9608 .9686 .9750 .9803 .9846 .9881 .9909 .9931 .9948 .9961 .9971 .9979 .9985 .9989 .9992 .9994 .9996 .9997 .07 5279 .5675 6064 .6443 .6808 .7157 .7486 .7794 8078 .8340 .8577 .8790 .8980 .9147 .9292 9418 9525 .9616 9693 .9756 .9808 .9850 .9884 .9911 .9932 .9949 .9962 .9972 9979 9985 .9989 9992 .9995 .9996 .9997 .08 5319 .5714 .6103 6480 6844 .7190 .7517 .7823 .8106 .8365 .8599 .8810 .8997 .9162 .9306 .9429 .9535 .9625 .9699 .9761 9812 .9854 .9887 .9913 .9934 .9951 .9963 9973 9980 .9986 .9990 .9993 9995 9996 .9997 .09 .5359 .5753 .6141 .6517 .6879 .7224 .7549 .7852 .8133 .8389 .8621 .8830 .9015 .9177 .9319 .9441 .9545 .9633 .9706 .9767 .9817 .9857 .9890 .9916 .9936 .9952 .9964 .9974 .9981 .9986 .9990 .9993 .9995 .9997 .9998 X Standard Normal Table (Page 1) NEGATIVE z Scores Z -3.50 and lower -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .0001 .0003 .0005 ,0007 .0010 .0013 .0019 .0026 .0035 .0047 .0062 .0082 .0107 .0139 .0179 .0228 .0287 .0359 0446 0548 .0668 .0808 0968 1151 1357 .1587 1841 .2119 .2420 2743 .3085 3446 3821 4207 .4602 .5000 .01 0003 .0005 .0007 .0009 .0013 .0018 .0025 0034 0045 0060 .0080 0104 0136 0174 0222 0281 .0351 0436 0537 0655 0793 0951 1131 1335 1562 1814 2090 2389 2709 .3050 .3409 .3783 4168 .4562 4960 02 .0003 .0005 .0006 .0009 0013 .0018 .0024 .0033 0044 .0059 .0078 .0102 .0132 0170 0217 0274 .0344 0427 0526 0643 0778 0934 1112 1314 1539 1788 2061 2358 2676 .3015 3372 .3745 4129 .4522 4920 .03 .0003 .0004 .0006 .0009 .0012 .0017 .0023 .0032 .0043 .0057 .0075 .0099 .0129 .0166 0212 .0268 .0336 0418 .0516 .0630 .0764 .0918 1093 1292 1515 1762 2033 2327 2643 2981 3336 .3707 4090 .4483 .4880 Print .04 .05 .0016 0003 .0003 .0004 .0004 .0006 .0006 .0008 .0008 .0012 .0011 .0016 .0022 .0030 .0040 .0054 .0071 .0094 0023 .0031 .0041 0055 .0073 0096 .0125 .0122 .0158 0162 0207 .0202 0262 .0329 .0256 .0322 .0401 0409 0505 0618 0749 0901 1075 * .0495 .0606 .0735 .0885 1056 1251 .1469 1711 1977 .1271 1492 .1736 .2005 .2266 .2296 2611 2946 .2578 .2912 3300 .3669 4052 .4443 4840 .3264 3632 4013 .4404 .4801 Done .06 .0003 .0004 .0006 .0008 .0011 .0015 .0021 .0029 .0039 0052 .0069 .0091 0119 0154 0197 0250 0314 0392 0485 0594 0721 .0869 1038 1230 1446 1685 1949 2236 2546 2877 3228 3594 3974 4364 4761 .07 .0003 .0004 .0005 .0008 .0011 .0015 .0021 .0028 .0038 .0051 .0068 .0089 .0116 0150 .0192 .0244 .0307 0384 0475 .0582 .0708 0853 1020 1210 1423 1660 1922 .2206 .2514 .2843 0 .3192 .3557 .3936 .4325 .4721 .08 0003 .0004 .0005 .0007 0010 .0014 .0020 0027 0037 * .0049 .0066 .0087 0113 0146 .0188 0239 .0301 .0375 0465 .0571 0694 0838 1003 1190 1401 1635 1894 2177 .2483 2810 .3156 3520 .3897 4286 4681 .09 .0002 .0003 ,0005 .0007 .0010 .0014 .0019 .0026 0036 .0048 .0064 .0084 .0110 .0143 .0183 0233 .0294 .0367 0455 .0559 .0681 0823 0985 1170 .1379 1611 1867 .2148 .2451 .2776 .3121 .3483 3859 .4247 .4641
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman