Assume that adults have IQ scores that are normally distributed with a mean of μ = 100 and a standard deviation = 15. Find the probability that a randomly selected adult has an IQ less than 118. Click to view page 1 of the table. Click to view page 2 of the table. The probability that a randomly selected adult has an IQ less than 118 is (Type an integer or decimal rounded to four decimal places s needed.) Standard Normal Table (Page 2) POSITIVE Z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT - X Standard Normal Table (Page 1) NEGATIVE z Scores -3.50 Standard Normal (2) Distribution: Cumulative Area from the LEFT ,00 01 02 03 04 05 06 07 08

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that adults have IQ scores that are normally distributed with a mean of μ = 100 and a standard deviation o=15. Find the probability that a randomly selected adult has an IQ less than 118.
Click to view page 1 of the table. Click to view page 2 of the table.
The probability that a randomly selected adult has an IQ less than 118 is
(Type an integer or decimal rounded to four decimal places as needed.)
Standard Normal Table (Page 2)
0.0
0,1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
34
0
.00
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.5000
5398
5793
.6179
.6554
.6915
7257
7580
.7881
.8159
.8413
.8643
.8849
9032
.9192
.9332
9452
.9554
9641
9713
9772
.9821
.9861
9893
.9918
.9938
Z
.9953
.9965
.9974
9981
.9987
9990
.9993
9995
9997
.01
5040
.5438
5832
.6217
.6591
.6950
7291
.7611
7910
.8186
8438
8665
8869
9049
9207
9345
9463
9564
.9649
.9719
.9778
.9826
9864
.9896
9920
9940
.9955
.9966
9975
.9982
9987
.9991
.9993
9995
9997
.02
5080
5478
5871
6255
6628
.6985
7324
7642
7939
.8212
.8461
8686
8888
9066
9222
9357
9474
.9573
.9656
.9726
9783
9830
9868
.9898
9922
9941
9956
9967
.9976
9982
9987
.9991
9994
.9995
9997
POSITIVE z Scores
.03
5120
.5160
.5517
.5557
5910 .5948
.6293
.6331
.6664
7019
7357
7673
7967
8238
8485
8708
.8907
.9082
.9236
9370
9484
.9582
9871
9901
.9925
9943
.9957
.04
.9968
9977
.9983
9988
.9991
9994
9996
9997
.6700
.7054
7389
.7704
7995
.8264
.8508
.8531
.8729
.8749
.8925
.8944
.9099
.9115
.9251
.9265
.9382
.9394
9495 9505
.9591
.9599
9664 .9671
.9732
.9738
9788
.9793
9834
.9838
.9875
.9904
.9927
.9945
.05
.9959
.9969
.9977
.9984
.9988
.9992
.9994
.9996
9997
.5199
.5596
.5987
.6368
.6736
.7088
7422
.7734
.8023
.8289
.9678
.9744
.9798
.9842
9878
.9906
.9929
.9946
9960
.9970
9978
9984
.9989
.9992
.9994
.9996
9997
.06
.5239
.5636
.6026
.6406
.6772
7123
7454
.7764
.8051
.8315
8554
.8770
.8962
.9131
.9279
.9406
9515
.9608
.9686
9750
.9803
.9846
.9881
.9909
.9931
.9948
9961
.9971
.9979
9985
.9989
.9992
.9994
.9996
9997
.07
5279
.5675
6064
5319
5714
.6103
6480
6844
.7190
7517
.7823
.8106
.8365
.8599
8810
.8997
.9162
9306
.9429
.9535
.9625
.9699
9756
.9761
.9808
9812
.9850
.9854
.9884
.9887
.9911
9913
9932
9934
9949 . .9951
.6443
.6808
7157
.7486
7794
.8078
.8340
.8577
.8790
.8980
.9147
9292
9418
9525
9616
9693
9962
.9972
9979
9985
.9989
.08
9992
.9995
9996
9997
.9963
9973
9980
9986
.9990
.9993
9995
9996
9997
.09
.5359
.5753
6141
.6517
.6879
.7224
.7549
.7852
.8133
.8389
.8621
8830
9015
.9177
.9319
9441
9545
.9633
.9706
.9767
.9817
.9857
.9890
9916
.9936
.9952
9964
.9974
.9981
.9986
.9990
.9993
.9995
.9997
9998
C
X
Standard Normal Table (Page 1)
NEGATIVE z Scores
Z
-3.50
and
lower
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
4
Standard Normal (z) Distribution: Cumulative Area from the LEFT
-0.4
-0.3
.00
.0001
.0003
.0005
.0007
.0010
.0013
.0019
.0026
.0035
.0047
0062
.0082
0107
.0139
.0179
0228
.0287
0359
0446
0548
0668
0808
.0968
1151
1357
1587
1841
2119
.2420
2743
.3085
3446
3821
4207
.01
0351
0436
0537
0655
0793
.0951
1131
1335
1562
1814
2090
.02
.0003 .0003 .0003
.0005 .0005 .0004
0007 .0006 .0006
0009 .0009
0013 .0013
0018 0018
.0024
.0025
0034
0045
0033
0044
0060 .0059
0080 0078
0104 .0102
.0136
.0132
0174
0170
0222
0217
0281
0274
2389
2709
3050
3409
3783
4168
.0344
0427
0526
.0643
.03
0778
0934
1112
1314
1539
1788
2061
2358
2676
.3015
3372
3745
4129
0212
0268
0336
0418
0516
0630
0764
.0918
1093
1292
1515
1762
.0003
0004
.0005
0007
0010
.0014
0003 .0003 .0003 .0003
.0004 .0004 .0004 .0004
.0006 .0006 .0006 .0005
.0009 .0008
.0008 .0008 .0008
0012
0012 .0011
.0011
,0011
0017
.0016 .0016 .0015
.0015
.0023
0023
.0021
.0032
0031
.0029
0041 .0040 .0039
0055 .0054 .0052
.0073 .0071 .0069
.0091
.0020
.0022
.0030
.0021
.0028
0038
.0027
0037
.0051 * 0049
0043
.0057
.0075
.0099
.0129
.0068 A.0066
.0125
0162
0096 .0094
.0122
.0158
0119
.0154
0166
.0089
.0116
0150
0192
0244
.0307
0207
0262
0329
0409
0505
0618
.0202 .0197
0250
0314
0392
0485
.0749
0901
1075
0384
0475
.0582
.0708
0853
1020
1210
1423
1271
1660
1922
.2206
.2514
.2843
3192
.3557
zaz6
2033
2327
.04
2643
2981
3336
3707
4090
1492
.1736
.2005
2296
2611
2946
.05
3300
.3669
4052
.06
.0256
.0322
.0401
* .0495
.0606
.0735
.0885
1056
1251
1469
1711
.1977
.2266
2578
.2912
3264
3632
4013
.07
0594
0721
.0869
1038
1230
1446
1685
1949
2236
2546
2877
3228
3594
3074
.08
0087
0113
0146
.0188
0239
.0301
.0375
.0465
.0571
0694
0838
1003
1190
1401
1635
1894
2177
2483
2810
.3156
3520
2007
.09
0002
.0003
0005
0007
0010
.0014
.0019
.0026
0036
.0048
.0064
.0084
.0110
0143
.0183
.0233
0294
.0367
0455
.0559
.0681
0823
0985
1170
.1379
1611
1867
2148
2451
2776
3121
3483
7259
X
kt
Transcribed Image Text:Assume that adults have IQ scores that are normally distributed with a mean of μ = 100 and a standard deviation o=15. Find the probability that a randomly selected adult has an IQ less than 118. Click to view page 1 of the table. Click to view page 2 of the table. The probability that a randomly selected adult has an IQ less than 118 is (Type an integer or decimal rounded to four decimal places as needed.) Standard Normal Table (Page 2) 0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 34 0 .00 Standard Normal (z) Distribution: Cumulative Area from the LEFT .5000 5398 5793 .6179 .6554 .6915 7257 7580 .7881 .8159 .8413 .8643 .8849 9032 .9192 .9332 9452 .9554 9641 9713 9772 .9821 .9861 9893 .9918 .9938 Z .9953 .9965 .9974 9981 .9987 9990 .9993 9995 9997 .01 5040 .5438 5832 .6217 .6591 .6950 7291 .7611 7910 .8186 8438 8665 8869 9049 9207 9345 9463 9564 .9649 .9719 .9778 .9826 9864 .9896 9920 9940 .9955 .9966 9975 .9982 9987 .9991 .9993 9995 9997 .02 5080 5478 5871 6255 6628 .6985 7324 7642 7939 .8212 .8461 8686 8888 9066 9222 9357 9474 .9573 .9656 .9726 9783 9830 9868 .9898 9922 9941 9956 9967 .9976 9982 9987 .9991 9994 .9995 9997 POSITIVE z Scores .03 5120 .5160 .5517 .5557 5910 .5948 .6293 .6331 .6664 7019 7357 7673 7967 8238 8485 8708 .8907 .9082 .9236 9370 9484 .9582 9871 9901 .9925 9943 .9957 .04 .9968 9977 .9983 9988 .9991 9994 9996 9997 .6700 .7054 7389 .7704 7995 .8264 .8508 .8531 .8729 .8749 .8925 .8944 .9099 .9115 .9251 .9265 .9382 .9394 9495 9505 .9591 .9599 9664 .9671 .9732 .9738 9788 .9793 9834 .9838 .9875 .9904 .9927 .9945 .05 .9959 .9969 .9977 .9984 .9988 .9992 .9994 .9996 9997 .5199 .5596 .5987 .6368 .6736 .7088 7422 .7734 .8023 .8289 .9678 .9744 .9798 .9842 9878 .9906 .9929 .9946 9960 .9970 9978 9984 .9989 .9992 .9994 .9996 9997 .06 .5239 .5636 .6026 .6406 .6772 7123 7454 .7764 .8051 .8315 8554 .8770 .8962 .9131 .9279 .9406 9515 .9608 .9686 9750 .9803 .9846 .9881 .9909 .9931 .9948 9961 .9971 .9979 9985 .9989 .9992 .9994 .9996 9997 .07 5279 .5675 6064 5319 5714 .6103 6480 6844 .7190 7517 .7823 .8106 .8365 .8599 8810 .8997 .9162 9306 .9429 .9535 .9625 .9699 9756 .9761 .9808 9812 .9850 .9854 .9884 .9887 .9911 9913 9932 9934 9949 . .9951 .6443 .6808 7157 .7486 7794 .8078 .8340 .8577 .8790 .8980 .9147 9292 9418 9525 9616 9693 9962 .9972 9979 9985 .9989 .08 9992 .9995 9996 9997 .9963 9973 9980 9986 .9990 .9993 9995 9996 9997 .09 .5359 .5753 6141 .6517 .6879 .7224 .7549 .7852 .8133 .8389 .8621 8830 9015 .9177 .9319 9441 9545 .9633 .9706 .9767 .9817 .9857 .9890 9916 .9936 .9952 9964 .9974 .9981 .9986 .9990 .9993 .9995 .9997 9998 C X Standard Normal Table (Page 1) NEGATIVE z Scores Z -3.50 and lower -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 4 Standard Normal (z) Distribution: Cumulative Area from the LEFT -0.4 -0.3 .00 .0001 .0003 .0005 .0007 .0010 .0013 .0019 .0026 .0035 .0047 0062 .0082 0107 .0139 .0179 0228 .0287 0359 0446 0548 0668 0808 .0968 1151 1357 1587 1841 2119 .2420 2743 .3085 3446 3821 4207 .01 0351 0436 0537 0655 0793 .0951 1131 1335 1562 1814 2090 .02 .0003 .0003 .0003 .0005 .0005 .0004 0007 .0006 .0006 0009 .0009 0013 .0013 0018 0018 .0024 .0025 0034 0045 0033 0044 0060 .0059 0080 0078 0104 .0102 .0136 .0132 0174 0170 0222 0217 0281 0274 2389 2709 3050 3409 3783 4168 .0344 0427 0526 .0643 .03 0778 0934 1112 1314 1539 1788 2061 2358 2676 .3015 3372 3745 4129 0212 0268 0336 0418 0516 0630 0764 .0918 1093 1292 1515 1762 .0003 0004 .0005 0007 0010 .0014 0003 .0003 .0003 .0003 .0004 .0004 .0004 .0004 .0006 .0006 .0006 .0005 .0009 .0008 .0008 .0008 .0008 0012 0012 .0011 .0011 ,0011 0017 .0016 .0016 .0015 .0015 .0023 0023 .0021 .0032 0031 .0029 0041 .0040 .0039 0055 .0054 .0052 .0073 .0071 .0069 .0091 .0020 .0022 .0030 .0021 .0028 0038 .0027 0037 .0051 * 0049 0043 .0057 .0075 .0099 .0129 .0068 A.0066 .0125 0162 0096 .0094 .0122 .0158 0119 .0154 0166 .0089 .0116 0150 0192 0244 .0307 0207 0262 0329 0409 0505 0618 .0202 .0197 0250 0314 0392 0485 .0749 0901 1075 0384 0475 .0582 .0708 0853 1020 1210 1423 1271 1660 1922 .2206 .2514 .2843 3192 .3557 zaz6 2033 2327 .04 2643 2981 3336 3707 4090 1492 .1736 .2005 2296 2611 2946 .05 3300 .3669 4052 .06 .0256 .0322 .0401 * .0495 .0606 .0735 .0885 1056 1251 1469 1711 .1977 .2266 2578 .2912 3264 3632 4013 .07 0594 0721 .0869 1038 1230 1446 1685 1949 2236 2546 2877 3228 3594 3074 .08 0087 0113 0146 .0188 0239 .0301 .0375 .0465 .0571 0694 0838 1003 1190 1401 1635 1894 2177 2483 2810 .3156 3520 2007 .09 0002 .0003 0005 0007 0010 .0014 .0019 .0026 0036 .0048 .0064 .0084 .0110 0143 .0183 .0233 0294 .0367 0455 .0559 .0681 0823 0985 1170 .1379 1611 1867 2148 2451 2776 3121 3483 7259 X kt
Expert Solution
Step 1

Given that 

X ~ N(μ = 100 , σ = 15 )
μ = 100  , σ = 15
Formula for Z-score
Z = (X - μ) / σ
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman