Find the inverse laplace of S F (s) = (s² + a²) (s² + b²) consider a + b², ab # 0 iswer cos at – cos bt O f (t) = b2 – a? b sin at + a sin bt O f (t) = ab (b² – a² ) ered a sin at – b sin bt f (t) = a? – b2 b sin at – a sin bt O f (1) = ab (b² – a² ) cos at + cos bt O f (1) = b² – a² a sin at + b sin bt O f (t) = a? – b2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the inverse laplace of
S
F (s)
(s2 + a²) (s² + b²)
consider
a² + b?, ab # 0
iswer
cos at –
cos bt
O f (t) =
b² – a²
b sin at + a sin bt
O f (t) =
ab (b² – a²)
ered
a sin at – b sin bt
f (t)
a? – b2
b sin at
- a sin bt
O f (t) =
ab (b² – a² )
cos at + cos bt
O f (t) =
b² – a²
a sin at + b sin bt
O f (t) =
a² – b²
Transcribed Image Text:Find the inverse laplace of S F (s) (s2 + a²) (s² + b²) consider a² + b?, ab # 0 iswer cos at – cos bt O f (t) = b² – a² b sin at + a sin bt O f (t) = ab (b² – a²) ered a sin at – b sin bt f (t) a? – b2 b sin at - a sin bt O f (t) = ab (b² – a² ) cos at + cos bt O f (t) = b² – a² a sin at + b sin bt O f (t) = a² – b²
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,