af ar fe Consider f(1, y, z) = r² + y²z² and I=r sin 0, y =r cos 0, z = Or³. Find and

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Concept explainers
Question
**Problem Statement:**

Consider the function \( f(x, y, z) = x^2 + y^2 z^2 \) and the parameterizations \( x = r \sin \theta \), \( y = r \cos \theta \), \( z = \theta r^3 \).

**Tasks:**

Find the partial derivatives:
1. \( \frac{\partial f}{\partial r} \)
2. \( \frac{\partial f}{\partial \theta} \)
Transcribed Image Text:**Problem Statement:** Consider the function \( f(x, y, z) = x^2 + y^2 z^2 \) and the parameterizations \( x = r \sin \theta \), \( y = r \cos \theta \), \( z = \theta r^3 \). **Tasks:** Find the partial derivatives: 1. \( \frac{\partial f}{\partial r} \) 2. \( \frac{\partial f}{\partial \theta} \)
Expert Solution
Given:

The function fx,y,z=x2+y2z2 and the polar transformation coordinates are x=rsinθ, x=rcosθ and z=θr3.

 

Explanation:

Substitute the values x=rsinθ, x=rcosθ and z=θr3 in the function fx,y,z.

fr,θ=r2sin2θ+r2cos2θθr32=r2sin2θ+r2cos2θθ2r6=r2sin2θ+θ2r8cos2θ

Obtain the derivative of the function fr,θ with respect r.

rfr,θ=rr2sin2θ+θ2r8cos2θ=2rsin2θ+8r7θ2cos2θ

Similarly, the derivative of the function fr,θ with respect θ.

θfr,θ=θr2sin2θ+θ2r8cos2θ=r22sinθcosθ+2θr8cos2θ+2θ2r8cosθ-sinθ=2r2sinθcosθ+2θr8cos2θ-2θ2r8cosθsinθ

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,