Find the following using the table below. x 3 4 f(x) 3 5 1 f'(x) -5 2 -4 1 g(x) 1 4 2 3 g'(x) 3 2 -1 4 If m(x) = 1 2 25 If q(x) = f(x) g(x), then q'(3) . f(x) g(x)' NA -2 then m' (3) If p(x) = f(g(x)), then p'(3) = = = -9 7 4 OF 08

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Using Derivatives and Functions from a Table**

The task involves finding derivatives of functions using the provided table of values.

**Table:**

| \( x \) | 1 | 2 | 3 | 4 |
|---------|---|---|---|---|
| \( f(x) \) | 3 | 5 | 1 | -2 |
| \( f'(x) \) | -5 | 2 | -4 | 1 |
| \( g(x) \) | 1 | 4 | 2 | 3 |
| \( g'(x) \) | 3 | 2 | -1 | 4 |

**Problems and Solutions:**

1. **Function \( q(x) = f(x) \cdot g(x) \)**

   Find \( q'(3) \).

   Solution:
   \[
   q'(x) = f(x)g'(x) + g(x)f'(x) 
   \]
   At \( x = 3 \):
   \[
   q'(3) = 1 \cdot (-1) + 2 \cdot (-4) = -9
   \]
   **Result: \( -9 \)**

2. **Function \( m(x) = \frac{f(x)}{g(x)} \)**

   Find \( m'(3) \).

   Solution:
   \[
   m'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
   \]
   At \( x = 3 \):
   \[
   m'(3) = \frac{2 \cdot (-4) - 1 \cdot (-1)}{2^2} = \frac{-7}{4}
   \]
   **Result: \( -\frac{7}{4} \)**

3. **Function \( p(x) = f(g(x)) \)**

   Find \( p'(3) \).

   Solution:
   Using the chain rule:
   \[
   p'(x) = f'(g(x)) \cdot g'(x)
   \]
   At \( x = 3 \):
   \[
   g(3) = 2, \quad f'(2) = 2, \quad g'(3) = -1 
   \
Transcribed Image Text:**Using Derivatives and Functions from a Table** The task involves finding derivatives of functions using the provided table of values. **Table:** | \( x \) | 1 | 2 | 3 | 4 | |---------|---|---|---|---| | \( f(x) \) | 3 | 5 | 1 | -2 | | \( f'(x) \) | -5 | 2 | -4 | 1 | | \( g(x) \) | 1 | 4 | 2 | 3 | | \( g'(x) \) | 3 | 2 | -1 | 4 | **Problems and Solutions:** 1. **Function \( q(x) = f(x) \cdot g(x) \)** Find \( q'(3) \). Solution: \[ q'(x) = f(x)g'(x) + g(x)f'(x) \] At \( x = 3 \): \[ q'(3) = 1 \cdot (-1) + 2 \cdot (-4) = -9 \] **Result: \( -9 \)** 2. **Function \( m(x) = \frac{f(x)}{g(x)} \)** Find \( m'(3) \). Solution: \[ m'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] At \( x = 3 \): \[ m'(3) = \frac{2 \cdot (-4) - 1 \cdot (-1)}{2^2} = \frac{-7}{4} \] **Result: \( -\frac{7}{4} \)** 3. **Function \( p(x) = f(g(x)) \)** Find \( p'(3) \). Solution: Using the chain rule: \[ p'(x) = f'(g(x)) \cdot g'(x) \] At \( x = 3 \): \[ g(3) = 2, \quad f'(2) = 2, \quad g'(3) = -1 \
Find the first derivative of \( z = \tan(\sin^2(t)) \).

\[
\frac{dz}{dt} = \, \boxed{}
\]

Note that the system does not like \(\sin^2 x\) notation. Instead, you must input as \(\sin^2(x)\) if needed.
Transcribed Image Text:Find the first derivative of \( z = \tan(\sin^2(t)) \). \[ \frac{dz}{dt} = \, \boxed{} \] Note that the system does not like \(\sin^2 x\) notation. Instead, you must input as \(\sin^2(x)\) if needed.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning