Find the following using the table below. X 1 2 3 4 3 4 f(x) 2 1 f'(x) 2 4 3 1 g(x) 2 4 3 1 g'(x) 2 4 3 1 h'(4) if h(x) = f(x) ·g(x) || h'(4) if h(x): = f(x) g(x) Enter a mathematical expression [more..] Question Help: Message instructor

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The problem involves finding derivatives using a table of values for functions \( f(x) \) and \( g(x) \). 

Below is the table provided for evaluating the functions:

\[
\begin{array}{c|cccc}
x & 1 & 2 & 3 & 4 \\
\hline
f(x) & 2 & 1 & 3 & 4 \\
f'(x) & 2 & 4 & 3 & 1 \\
g(x) & 2 & 4 & 3 & 1 \\
g'(x) & 2 & 4 & 3 & 1 \\
\end{array}
\]

The tasks are:

1. Calculate \( h'(4) \) if \( h(x) = f(x) \cdot g(x) \).

2. Calculate \( h'(4) \) if \( h(x) = \frac{f(x)}{g(x)} \).

For each part, the student needs to use derivatives and the values from the table. 

For product rule: 
\[
h'(x) = f'(x)g(x) + f(x)g'(x)
\]

For quotient rule:
\[
h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}
\]

These formulas will be applied using the values at \( x = 4 \) from the table.
Transcribed Image Text:The problem involves finding derivatives using a table of values for functions \( f(x) \) and \( g(x) \). Below is the table provided for evaluating the functions: \[ \begin{array}{c|cccc} x & 1 & 2 & 3 & 4 \\ \hline f(x) & 2 & 1 & 3 & 4 \\ f'(x) & 2 & 4 & 3 & 1 \\ g(x) & 2 & 4 & 3 & 1 \\ g'(x) & 2 & 4 & 3 & 1 \\ \end{array} \] The tasks are: 1. Calculate \( h'(4) \) if \( h(x) = f(x) \cdot g(x) \). 2. Calculate \( h'(4) \) if \( h(x) = \frac{f(x)}{g(x)} \). For each part, the student needs to use derivatives and the values from the table. For product rule: \[ h'(x) = f'(x)g(x) + f(x)g'(x) \] For quotient rule: \[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] These formulas will be applied using the values at \( x = 4 \) from the table.
Expert Solution
Step 1: Step 1

1) given function h(x)=f(x).g(x)

Derivative w.r.t 'x' by using the product rule

formula of the product rule

d/dx[f(x)g(x)]=[(d/dx)f(x)]g(x)+f(x)[(d/dx)g(x)]

h′(x)=f(x)×g′(x)+g(x)×f′(x) 

put x=4 in above equation




f(4)=1
f(4)=1
g(4)=1
g(4)=1Math input error

h(4)=4×1+1×1
h'(4)=5
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,