क्ने Find the curl of F(x, y, 2) = (2x,3y, 52). < 2, 3, 5 > depends on the point (x, y, z) ● 10 O < 0, 0, 0 >

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please explain the process. Sometimes my answers come back through this service accuracy is priceless, and overly appreciated and even paid for. You Guys ROCK! Thank You Bartleby and Staff!

### Calculus Problem: Computing Curl of a Vector Field

#### Problem Statement:
Find the curl of \(\vec{F}(x, y, z) = \langle 2x, 3y, 5z \rangle\).

#### Answer Choices:
- ⭕ `< 2, 3, 5 >`
- ⭕ `10`
- ⭕ `depends on the point (x, y, z)`
- ⭘ `< 0, 0, 0 >`

#### Solution Explanation:
In vector calculus, the curl of a vector field \(\vec{F} = \langle P, Q, R \rangle\) is given by:

\[
\nabla \times \vec{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)
\]

For \(\vec{F}(x, y, z) = \langle 2x, 3y, 5z \rangle\):
- \(P = 2x\)
- \(Q = 3y\)
- \(R = 5z\)

Calculate the components of the curl:
- \(\frac{\partial R}{\partial y} = \frac{\partial (5z)}{\partial y} = 0\)
- \(\frac{\partial Q}{\partial z} = \frac{\partial (3y)}{\partial z} = 0\)
- \(\frac{\partial P}{\partial z} = \frac{\partial (2x)}{\partial z} = 0\)
- \(\frac{\partial R}{\partial x} = \frac{\partial (5z)}{\partial x} = 0\)
- \(\frac{\partial Q}{\partial x} = \frac{\partial (3y)}{\partial x} = 0\)
- \(\frac{\partial P}{\partial y} = \frac{\partial (2x)}{\partial y} = 0\)

Thus:

\[
\nabla \times \vec{F} = \langle 0 - 0, 0 -
Transcribed Image Text:### Calculus Problem: Computing Curl of a Vector Field #### Problem Statement: Find the curl of \(\vec{F}(x, y, z) = \langle 2x, 3y, 5z \rangle\). #### Answer Choices: - ⭕ `< 2, 3, 5 >` - ⭕ `10` - ⭕ `depends on the point (x, y, z)` - ⭘ `< 0, 0, 0 >` #### Solution Explanation: In vector calculus, the curl of a vector field \(\vec{F} = \langle P, Q, R \rangle\) is given by: \[ \nabla \times \vec{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \] For \(\vec{F}(x, y, z) = \langle 2x, 3y, 5z \rangle\): - \(P = 2x\) - \(Q = 3y\) - \(R = 5z\) Calculate the components of the curl: - \(\frac{\partial R}{\partial y} = \frac{\partial (5z)}{\partial y} = 0\) - \(\frac{\partial Q}{\partial z} = \frac{\partial (3y)}{\partial z} = 0\) - \(\frac{\partial P}{\partial z} = \frac{\partial (2x)}{\partial z} = 0\) - \(\frac{\partial R}{\partial x} = \frac{\partial (5z)}{\partial x} = 0\) - \(\frac{\partial Q}{\partial x} = \frac{\partial (3y)}{\partial x} = 0\) - \(\frac{\partial P}{\partial y} = \frac{\partial (2x)}{\partial y} = 0\) Thus: \[ \nabla \times \vec{F} = \langle 0 - 0, 0 -
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning