Find the critical z-value (or values) for the left-tailed test with a = 0.10. Round to two decimal places Table E The Standard Normal Distribution Cumulative Standard Normal Distribution .00 .01 .02 03 .04 .05 .06 .07 08 .09 <-334 .0003 .0003 .0003 0003 .0003 0003 .0003 0003 0003 0002 <-33 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 <-3.2 .0007 .0007 0006 .0006 .0006 .0006 0006 0005 .0005 0005 <-3.1 .0010 0009 .0009 0009 .0008 0008 0008 0008 0007 .0007 <-3.0 .0013 .0013 .0013 0012 0012 .0011 0011 0011 0010 0010 <-29 .0019 0018 0018 .0017 .0016 .0016 0015 .0015 0014 0014 -2.8 .0026 0025 0024 .0023 0023 0022 0021 0021 0020 0019 -2.7 .0035 .0034 .0033 0032 0031 0030 .0029 0028 .0027 0026 -26 0047 0045 .0044 .0043 0041 0040 0039 0038 0037 0036 <-25 .0062 .0060 0059 .0057 0055 0054 .0052 .0051 .0049 .0048 -2.4 0082 .00 .0075 0073 0071 0069 0068 0066 0064 -23 0107 0104 0102 .0099 0096 0094 0091 0089 0087 0084 -22 0139 L0136 0132 0129 0125 0122 0119 .0116 .0113 0110 <-21 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -2.0 0228 .0222 .0217 0212 0207 0202 0197 0192 0188 0183 -1.9 0287 .0281 0274 0268 0262 0256 0250 .0244 0239 0233 -1.8 0359 .0351 0344 0336 0329 0322 0314 0307 .0301 .0294 -1.7 0446 0436 0427 0418 0409 .0401 0392 0384 0375 .0367 -16 0548 0537 0526 0516 0505 0495 0485 0475 0465 0455 -15 0668 0655 0643 0630 0618 .0606 .0594 0582 0571 .0559 -14 .0808 .0793 0778 0764 0749 0735 0721 .0708 .0694 0681 -13 0968 0951 0934 0918 0901 .0885 0869 0853 0838 0823 -1.2 1151 1131 112 1093 1075 1056 1038 1020 1003 .0985 -1 1357 .1335 1314 1292 1271 1251 1230 .1210 .1190 1170 -10 1587 1562 1539 1515 1492 1469 1446 1423 .1401 1379

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
### Understanding Z-Values from the Standard Normal Distribution Table

**Objective**: Determine the critical z-value(s) for the left-tailed test with α = 0.10. Results should be accurate to two decimal places.

This table represents the Cumulative Standard Normal Distribution (denoted as Table E). The entries contained are the cumulative probabilities from the z-distribution.

**Structure of the Table**:
1. **Rows and Columns Explanation**:
   - The rows are labeled by `z` values on the leftmost column.
   - The columns are labeled by decimal values from `.00` to `.09`.

**How to Use the Table**:
1. **Locate the row** that corresponds to the integral part and the first decimal place of your `z` value.
2. **Find the column** that matches the second decimal place of your `z` value.

**Example Data Points and Calculation**:
For learning purposes, here's an example. Identify `z` values for a left-tailed test with α = 0.10. To find the critical `z` value:
- Locate the cumulative probability closest to 0.10 in the table.
- Read off the corresponding `z` value.

### Key Segments of the Table:
Below is a summary of relevant sections of the cumulative standard normal distribution table for quick reference:

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -3.4| .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 | .0002 |
| -3.3| .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 | .0003 |
| -3.2| .0010 | .0009 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0007 | .0007 |
| -3.1| .0013 | .0013 | .0012 | .0012 |
Transcribed Image Text:### Understanding Z-Values from the Standard Normal Distribution Table **Objective**: Determine the critical z-value(s) for the left-tailed test with α = 0.10. Results should be accurate to two decimal places. This table represents the Cumulative Standard Normal Distribution (denoted as Table E). The entries contained are the cumulative probabilities from the z-distribution. **Structure of the Table**: 1. **Rows and Columns Explanation**: - The rows are labeled by `z` values on the leftmost column. - The columns are labeled by decimal values from `.00` to `.09`. **How to Use the Table**: 1. **Locate the row** that corresponds to the integral part and the first decimal place of your `z` value. 2. **Find the column** that matches the second decimal place of your `z` value. **Example Data Points and Calculation**: For learning purposes, here's an example. Identify `z` values for a left-tailed test with α = 0.10. To find the critical `z` value: - Locate the cumulative probability closest to 0.10 in the table. - Read off the corresponding `z` value. ### Key Segments of the Table: Below is a summary of relevant sections of the cumulative standard normal distribution table for quick reference: | z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | -3.4| .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 | .0002 | | -3.3| .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 | .0003 | | -3.2| .0010 | .0009 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0007 | .0007 | | -3.1| .0013 | .0013 | .0012 | .0012 |
**Question Options:**

- ⃝ -1.28
- ⃝ 1.28
- ⃝ ±1.28
- ⃝ None of these

This image shows a multiple-choice question with four possible answers. The choices are numerical values: -1.28, 1.28, ±1.28, and "None of these." 

For educational purposes, this could be related to a question on standard deviations, z-scores, or critical values associated with statistical concepts.
Transcribed Image Text:**Question Options:** - ⃝ -1.28 - ⃝ 1.28 - ⃝ ±1.28 - ⃝ None of these This image shows a multiple-choice question with four possible answers. The choices are numerical values: -1.28, 1.28, ±1.28, and "None of these." For educational purposes, this could be related to a question on standard deviations, z-scores, or critical values associated with statistical concepts.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman