Find the critical z-value (or values) for the left-tailed test with a = 0.10. Round to two decimal places Table E The Standard Normal Distribution Cumulative Standard Normal Distribution .00 .01 .02 03 .04 .05 .06 .07 08 .09 <-334 .0003 .0003 .0003 0003 .0003 0003 .0003 0003 0003 0002 <-33 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 <-3.2 .0007 .0007 0006 .0006 .0006 .0006 0006 0005 .0005 0005 <-3.1 .0010 0009 .0009 0009 .0008 0008 0008 0008 0007 .0007 <-3.0 .0013 .0013 .0013 0012 0012 .0011 0011 0011 0010 0010 <-29 .0019 0018 0018 .0017 .0016 .0016 0015 .0015 0014 0014 -2.8 .0026 0025 0024 .0023 0023 0022 0021 0021 0020 0019 -2.7 .0035 .0034 .0033 0032 0031 0030 .0029 0028 .0027 0026 -26 0047 0045 .0044 .0043 0041 0040 0039 0038 0037 0036 <-25 .0062 .0060 0059 .0057 0055 0054 .0052 .0051 .0049 .0048 -2.4 0082 .00 .0075 0073 0071 0069 0068 0066 0064 -23 0107 0104 0102 .0099 0096 0094 0091 0089 0087 0084 -22 0139 L0136 0132 0129 0125 0122 0119 .0116 .0113 0110 <-21 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -2.0 0228 .0222 .0217 0212 0207 0202 0197 0192 0188 0183 -1.9 0287 .0281 0274 0268 0262 0256 0250 .0244 0239 0233 -1.8 0359 .0351 0344 0336 0329 0322 0314 0307 .0301 .0294 -1.7 0446 0436 0427 0418 0409 .0401 0392 0384 0375 .0367 -16 0548 0537 0526 0516 0505 0495 0485 0475 0465 0455 -15 0668 0655 0643 0630 0618 .0606 .0594 0582 0571 .0559 -14 .0808 .0793 0778 0764 0749 0735 0721 .0708 .0694 0681 -13 0968 0951 0934 0918 0901 .0885 0869 0853 0838 0823 -1.2 1151 1131 112 1093 1075 1056 1038 1020 1003 .0985 -1 1357 .1335 1314 1292 1271 1251 1230 .1210 .1190 1170 -10 1587 1562 1539 1515 1492 1469 1446 1423 .1401 1379

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
### Understanding Z-Values from the Standard Normal Distribution Table

**Objective**: Determine the critical z-value(s) for the left-tailed test with α = 0.10. Results should be accurate to two decimal places.

This table represents the Cumulative Standard Normal Distribution (denoted as Table E). The entries contained are the cumulative probabilities from the z-distribution.

**Structure of the Table**:
1. **Rows and Columns Explanation**:
   - The rows are labeled by `z` values on the leftmost column.
   - The columns are labeled by decimal values from `.00` to `.09`.

**How to Use the Table**:
1. **Locate the row** that corresponds to the integral part and the first decimal place of your `z` value.
2. **Find the column** that matches the second decimal place of your `z` value.

**Example Data Points and Calculation**:
For learning purposes, here's an example. Identify `z` values for a left-tailed test with α = 0.10. To find the critical `z` value:
- Locate the cumulative probability closest to 0.10 in the table.
- Read off the corresponding `z` value.

### Key Segments of the Table:
Below is a summary of relevant sections of the cumulative standard normal distribution table for quick reference:

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -3.4| .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 | .0002 |
| -3.3| .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 | .0003 |
| -3.2| .0010 | .0009 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0007 | .0007 |
| -3.1| .0013 | .0013 | .0012 | .0012 |
Transcribed Image Text:### Understanding Z-Values from the Standard Normal Distribution Table **Objective**: Determine the critical z-value(s) for the left-tailed test with α = 0.10. Results should be accurate to two decimal places. This table represents the Cumulative Standard Normal Distribution (denoted as Table E). The entries contained are the cumulative probabilities from the z-distribution. **Structure of the Table**: 1. **Rows and Columns Explanation**: - The rows are labeled by `z` values on the leftmost column. - The columns are labeled by decimal values from `.00` to `.09`. **How to Use the Table**: 1. **Locate the row** that corresponds to the integral part and the first decimal place of your `z` value. 2. **Find the column** that matches the second decimal place of your `z` value. **Example Data Points and Calculation**: For learning purposes, here's an example. Identify `z` values for a left-tailed test with α = 0.10. To find the critical `z` value: - Locate the cumulative probability closest to 0.10 in the table. - Read off the corresponding `z` value. ### Key Segments of the Table: Below is a summary of relevant sections of the cumulative standard normal distribution table for quick reference: | z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | -3.4| .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 | .0002 | | -3.3| .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 | .0003 | | -3.2| .0010 | .0009 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0007 | .0007 | | -3.1| .0013 | .0013 | .0012 | .0012 |
**Question Options:**

- ⃝ -1.28
- ⃝ 1.28
- ⃝ ±1.28
- ⃝ None of these

This image shows a multiple-choice question with four possible answers. The choices are numerical values: -1.28, 1.28, ±1.28, and "None of these." 

For educational purposes, this could be related to a question on standard deviations, z-scores, or critical values associated with statistical concepts.
Transcribed Image Text:**Question Options:** - ⃝ -1.28 - ⃝ 1.28 - ⃝ ±1.28 - ⃝ None of these This image shows a multiple-choice question with four possible answers. The choices are numerical values: -1.28, 1.28, ±1.28, and "None of these." For educational purposes, this could be related to a question on standard deviations, z-scores, or critical values associated with statistical concepts.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman