Assume that human body temperatures are normally distributed with a mean of 98.21°F and a standard deviation of 0.61°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. Standard Normal Table (Page 1) a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? OA. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. OB. No, because there is a small probability that a normal and healthy person would be considered to have a fever. OC. No, because there is a large probability that a normal and healthy person would be considered to have a fever. OD. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 .05 .06 07 08 -3.50 and lower 0001 0003 0003 .0003 0003 .0003 .0003 .0003 0003 0003 0002 -3.3 .0005 0005 0005 .0004 0004 .0004 0004 .0004 .0004 0003 -3.2 .0007 0007 0006 0006 0006 0006 0005 0005 -31 0010 .0009 .0009 .0009 0008 .0008 0008 0007 0007 -3.0 0013- .0013 0013 0012 .0012 .com .com .com 0010 0010 -2.9 .0019 0018 0018 0017 0016 .0016 .0015 0015 0014 0014 -2.8 .0026 0025 .0024 .0023 0023 0022 0021 .0021 .0020 0019 -27 .0035 0034 0033 .0032 0031 0030 0029 0028 0027 0026 -2.6 .0047 .0045 0044 0043 .0040 0039 0038 .0037 0036 -2.5 .0062 .0060 .0059 0057 .0055 .0054 d052 .0051 • 0049 0048 -2.4 .0082 .0080 .0078 .0075 .0073 .0071 0069 .0068 A0066 0064 -2.3 0107 0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 -2.2 0139 0136 0132 0129 0125 0122 0119 0116 0113 0110 -21 0179 .0174 0170 .0166 0162 0158 0154 0150 0146 0143 -20 0226 0222 .0217 0212 0207 0202 0197 0192 0188 0183 -19 .0281 0274 .0268 0262 .0256 0250 0244 0239 0233 -1.8 .0359 .0351 .0344 0336 0329 0322 0314 .0307 0301 -17 0446 0436 0427 0418 0409 0401 .0392 0384 0375 0367 -16 0548 0537 0526 0516 ⚫ 0495 0465 0455 -15 .0655 0643 0630 0618 A.0606 0582 0571 0559 -1.4 0808 0793 0778 .0764 0749 .0735 0721 0708 0694 0681 -1.3 0968 0951 0934 0918 0901 0885 0869 0853 0838 0823 -12 1151 .1151 1112 1093 3075 1056 1038 1020 1003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 -1.0 1587 1562 1539 1515 3492 1469 3446 1423 3401 1379 -0.9 1841 1814 1788 1762 1736 1711 1685 1635 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 1894 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -0.5 .3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 Standard Normal Table (Page 2) POSITIVE z Scores 0 Z Standard Normal (z) Distribution: Cumulative Area from the LEFT Z .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 5199 .5239 5279 .5319 5359 0.1 5398 5438 5478 5517 .5557 5596 .5636 5675 5714 5753 0.2 .5793 5832 5871 5910 .5948 5987 .6026 6064 .6103 .6141 0.3 6179 6217 .6255 .6293 .6331 .6368 .6406 .6443 6480 .6517 0.4 6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 6844 .6879 0.5 6915 .6950 .6985 .7019 .7054 .7088 .7123 7157 .7190 .7224 0.6 .7257 7291 .7324 .7357 7389 .7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 7794 .7823 .7852 0.8 7881 7910 7939 .7967 .7995 .8023 .8051 8078 .8106. 8133 0,9 8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 .8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 8665 8686 .8708 8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 8869 8888 8907 .8925 8944 .8962 8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 9222 .9236 .9251 .9265 .9279 .9292 9306 .9319 1.5 .9332 9345 9357 .9370 .9382 .9394 .9406 9418 9429 .9441 1.6 9452 9463 9474 9484 .9495 • .9505 .9515 .9525 .9535 9545 1.7 .9554 .9564 .9573 9582 .9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 9693 .9699 .9706 1.9 .9713 .9719 .9726 9732 .9738 9744 .9750 .9756 .9761 .9767 2.0 9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that human body temperatures are normally distributed with a mean of 98.21°F and a standard deviation of 0.61°F.
a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate?
b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the
subject is not really sick.)
Click to view page 1 of the table. Click to view page 2 of the table.
Standard Normal Table (Page 1)
a. The percentage of normal and healthy persons considered to have a fever is 0.01 %.
(Round to two decimal places as needed.)
Does this percentage suggest that a cutoff of 100.6°F is appropriate?
OA. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever.
OB. No, because there is a small probability that a normal and healthy person would be considered to have a fever.
OC. No, because there is a large probability that a normal and healthy person would be considered to have a fever.
OD. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever.
NEGATIVE z Scores
Standard Normal (2) Distribution: Cumulative Area from the LEFT
.00
.01
.02
.03
.05
.06
07
08
-3.50
and
lower
0001
0003
0003 .0003
0003
.0003
.0003
.0003
0003
0003
0002
-3.3
.0005
0005
0005
.0004
0004
.0004
0004
.0004
.0004
0003
-3.2
.0007
0007
0006
0006
0006
0006
0005
0005
-31
0010
.0009 .0009
.0009
0008
.0008
0008
0007
0007
-3.0
0013-
.0013
0013
0012
.0012
.com
.com
.com
0010
0010
-2.9
.0019
0018
0018
0017
0016
.0016
.0015
0015
0014
0014
-2.8
.0026
0025
.0024
.0023
0023
0022
0021
.0021
.0020
0019
-27
.0035
0034
0033
.0032
0031
0030
0029
0028
0027
0026
-2.6
.0047
.0045
0044
0043
.0040
0039
0038
.0037
0036
-2.5
.0062
.0060
.0059
0057
.0055
.0054
d052
.0051
•
0049
0048
-2.4
.0082
.0080
.0078
.0075
.0073
.0071
0069
.0068
A0066
0064
-2.3
0107
0104
.0102
.0099
.0096
.0094
.0091
.0089
.0087
.0084
-2.2
0139
0136
0132
0129
0125
0122
0119
0116
0113
0110
-21
0179
.0174
0170
.0166
0162
0158
0154
0150
0146
0143
-20
0226
0222
.0217
0212
0207
0202
0197
0192
0188
0183
-19
.0281
0274
.0268
0262
.0256
0250
0244
0239
0233
-1.8
.0359
.0351
.0344
0336
0329
0322
0314
.0307
0301
-17
0446
0436
0427
0418
0409
0401
.0392
0384
0375
0367
-16
0548
0537
0526
0516
⚫ 0495
0465
0455
-15
.0655
0643
0630
0618
A.0606
0582
0571
0559
-1.4
0808
0793
0778
.0764
0749
.0735
0721
0708
0694
0681
-1.3
0968
0951
0934
0918
0901
0885
0869
0853
0838
0823
-12
1151
.1151
1112
1093
3075
1056
1038
1020
1003
0985
-11
1357
1335
1314
1292
1271
1251
1230
1210
1190
1170
-1.0
1587
1562
1539
1515
3492
1469
3446
1423
3401
1379
-0.9
1841
1814
1788
1762
1736
1711
1685
1635
-0.8
2119
2090
2061
2033
2005
1977
1949
1922
1894
-0.7
2420
2389
2358
2327
2296
2266
2236
2206
2177
2148
-0.6
2743
2709
2676
2643
2611
2578
2546
2514
2483
2451
-0.5
.3085
3050
3015
2981
2946
2912
2877
2843
2810
2776
-0.4
3446
3409
3372
3336
3300
3264
3228
3192
3156
3121
Transcribed Image Text:Assume that human body temperatures are normally distributed with a mean of 98.21°F and a standard deviation of 0.61°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. Standard Normal Table (Page 1) a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? OA. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. OB. No, because there is a small probability that a normal and healthy person would be considered to have a fever. OC. No, because there is a large probability that a normal and healthy person would be considered to have a fever. OD. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 .05 .06 07 08 -3.50 and lower 0001 0003 0003 .0003 0003 .0003 .0003 .0003 0003 0003 0002 -3.3 .0005 0005 0005 .0004 0004 .0004 0004 .0004 .0004 0003 -3.2 .0007 0007 0006 0006 0006 0006 0005 0005 -31 0010 .0009 .0009 .0009 0008 .0008 0008 0007 0007 -3.0 0013- .0013 0013 0012 .0012 .com .com .com 0010 0010 -2.9 .0019 0018 0018 0017 0016 .0016 .0015 0015 0014 0014 -2.8 .0026 0025 .0024 .0023 0023 0022 0021 .0021 .0020 0019 -27 .0035 0034 0033 .0032 0031 0030 0029 0028 0027 0026 -2.6 .0047 .0045 0044 0043 .0040 0039 0038 .0037 0036 -2.5 .0062 .0060 .0059 0057 .0055 .0054 d052 .0051 • 0049 0048 -2.4 .0082 .0080 .0078 .0075 .0073 .0071 0069 .0068 A0066 0064 -2.3 0107 0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 -2.2 0139 0136 0132 0129 0125 0122 0119 0116 0113 0110 -21 0179 .0174 0170 .0166 0162 0158 0154 0150 0146 0143 -20 0226 0222 .0217 0212 0207 0202 0197 0192 0188 0183 -19 .0281 0274 .0268 0262 .0256 0250 0244 0239 0233 -1.8 .0359 .0351 .0344 0336 0329 0322 0314 .0307 0301 -17 0446 0436 0427 0418 0409 0401 .0392 0384 0375 0367 -16 0548 0537 0526 0516 ⚫ 0495 0465 0455 -15 .0655 0643 0630 0618 A.0606 0582 0571 0559 -1.4 0808 0793 0778 .0764 0749 .0735 0721 0708 0694 0681 -1.3 0968 0951 0934 0918 0901 0885 0869 0853 0838 0823 -12 1151 .1151 1112 1093 3075 1056 1038 1020 1003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 -1.0 1587 1562 1539 1515 3492 1469 3446 1423 3401 1379 -0.9 1841 1814 1788 1762 1736 1711 1685 1635 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 1894 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -0.5 .3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121
Standard Normal Table (Page 2)
POSITIVE z Scores
0
Z
Standard Normal (z) Distribution: Cumulative Area from the LEFT
Z
.00
.01
02
.03
.04
.05
.06
.07
.08
.09
0.0
5000
5040
5080
5120
5160
5199
.5239
5279
.5319
5359
0.1
5398
5438
5478
5517
.5557
5596
.5636
5675
5714
5753
0.2
.5793
5832
5871
5910
.5948
5987
.6026
6064
.6103
.6141
0.3
6179
6217
.6255
.6293
.6331
.6368
.6406
.6443
6480
.6517
0.4
6554
6591
.6628
.6664
.6700
.6736
.6772
.6808
6844
.6879
0.5
6915
.6950
.6985
.7019
.7054
.7088
.7123
7157
.7190
.7224
0.6
.7257
7291
.7324
.7357
7389
.7422
.7454
.7486
.7517
.7549
0.7
.7580
.7611
.7642
.7673
.7704
.7734
.7764
7794
.7823
.7852
0.8
7881
7910
7939
.7967
.7995
.8023
.8051
8078
.8106.
8133
0,9
8159
.8186
.8212
.8238
.8264
.8289
.8315
.8340
.8365
.8389
1.0
.8413
8438
.8461
.8485
.8508
.8531
.8554
.8577
.8599
.8621
1.1
.8643
8665
8686
.8708
8729
.8749
.8770
.8790
.8810
.8830
1.2
.8849
8869
8888
8907
.8925
8944
.8962
8980
.8997
.9015
1.3
.9032
.9049
.9066
.9082
.9099
.9115
.9131
.9147
.9162
.9177
1.4
.9192
9207
9222
.9236
.9251
.9265
.9279
.9292
9306
.9319
1.5
.9332
9345
9357
.9370
.9382
.9394
.9406
9418
9429
.9441
1.6
9452
9463
9474
9484
.9495 • .9505
.9515
.9525
.9535
9545
1.7
.9554
.9564
.9573
9582
.9591
.9599
.9608
.9616
.9625
.9633
1.8
.9641
.9649
.9656
.9664
.9671
.9678
.9686
9693
.9699
.9706
1.9
.9713
.9719
.9726
9732
.9738
9744
.9750
.9756
.9761
.9767
2.0
9772
.9778
.9783
.9788
.9793
.9798
.9803
.9808
.9812
.9817
Transcribed Image Text:Standard Normal Table (Page 2) POSITIVE z Scores 0 Z Standard Normal (z) Distribution: Cumulative Area from the LEFT Z .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 5199 .5239 5279 .5319 5359 0.1 5398 5438 5478 5517 .5557 5596 .5636 5675 5714 5753 0.2 .5793 5832 5871 5910 .5948 5987 .6026 6064 .6103 .6141 0.3 6179 6217 .6255 .6293 .6331 .6368 .6406 .6443 6480 .6517 0.4 6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 6844 .6879 0.5 6915 .6950 .6985 .7019 .7054 .7088 .7123 7157 .7190 .7224 0.6 .7257 7291 .7324 .7357 7389 .7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 7794 .7823 .7852 0.8 7881 7910 7939 .7967 .7995 .8023 .8051 8078 .8106. 8133 0,9 8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 .8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 8665 8686 .8708 8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 8869 8888 8907 .8925 8944 .8962 8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 9222 .9236 .9251 .9265 .9279 .9292 9306 .9319 1.5 .9332 9345 9357 .9370 .9382 .9394 .9406 9418 9429 .9441 1.6 9452 9463 9474 9484 .9495 • .9505 .9515 .9525 .9535 9545 1.7 .9554 .9564 .9573 9582 .9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 9693 .9699 .9706 1.9 .9713 .9719 .9726 9732 .9738 9744 .9750 .9756 .9761 .9767 2.0 9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman