Find the area AND perimeter. 28.6 ft 26.4 ft

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
icon
Concept explainers
Question
(#3) I’m so confused, someone please help
### Geometry: Finding the Area and Perimeter of a Right Triangle

#### Problem Statement:

**Find the area AND perimeter.**

![Right Triangle]

#### Given:
- Length of one leg: 28.6 ft
- Length of the other leg: 26.4 ft

#### Diagram:
The diagram shows a right triangle with the two given legs forming the right angle.

### Steps to Solve:

#### Step 1: Calculate the Area

For a right triangle, the area can be found using the formula:
\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \]

Here, the base is 28.6 ft and the height is 26.4 ft.

So,
\[ \text{Area} = \frac{1}{2} \times 28.6 \, \text{ft} \times 26.4 \, \text{ft} \]
\[ \text{Area} = \frac{1}{2} \times 754.24 \, \text{ft}^2 \]
\[ \text{Area} = 377.12 \, \text{ft}^2 \]

#### Step 2: Calculate the Hypotenuse

The hypotenuse of a right triangle can be found using the Pythagorean theorem:
\[ \text{Hypotenuse} = \sqrt{(\text{base})^2 + (\text{height})^2} \]

So,
\[ \text{Hypotenuse} = \sqrt{(28.6 \, \text{ft})^2 + (26.4 \, \text{ft})^2} \]
\[ \text{Hypotenuse} = \sqrt{817.96 + 696.96} \]
\[ \text{Hypotenuse} = \sqrt{1514.92} \]
\[ \text{Hypotenuse} \approx 38.92 \, \text{ft} \]

#### Step 3: Calculate the Perimeter

The perimeter of the triangle is the sum of all its sides:
\[ \text{Perimeter} = \text{base} + \text{height} + \text{hypotenuse} \]
\[ \text{Perimeter} = 28.6 \, \text{ft} + 26.4 \, \
Transcribed Image Text:### Geometry: Finding the Area and Perimeter of a Right Triangle #### Problem Statement: **Find the area AND perimeter.** ![Right Triangle] #### Given: - Length of one leg: 28.6 ft - Length of the other leg: 26.4 ft #### Diagram: The diagram shows a right triangle with the two given legs forming the right angle. ### Steps to Solve: #### Step 1: Calculate the Area For a right triangle, the area can be found using the formula: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] Here, the base is 28.6 ft and the height is 26.4 ft. So, \[ \text{Area} = \frac{1}{2} \times 28.6 \, \text{ft} \times 26.4 \, \text{ft} \] \[ \text{Area} = \frac{1}{2} \times 754.24 \, \text{ft}^2 \] \[ \text{Area} = 377.12 \, \text{ft}^2 \] #### Step 2: Calculate the Hypotenuse The hypotenuse of a right triangle can be found using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{(\text{base})^2 + (\text{height})^2} \] So, \[ \text{Hypotenuse} = \sqrt{(28.6 \, \text{ft})^2 + (26.4 \, \text{ft})^2} \] \[ \text{Hypotenuse} = \sqrt{817.96 + 696.96} \] \[ \text{Hypotenuse} = \sqrt{1514.92} \] \[ \text{Hypotenuse} \approx 38.92 \, \text{ft} \] #### Step 3: Calculate the Perimeter The perimeter of the triangle is the sum of all its sides: \[ \text{Perimeter} = \text{base} + \text{height} + \text{hypotenuse} \] \[ \text{Perimeter} = 28.6 \, \text{ft} + 26.4 \, \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Fundamentals of Algebraic Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning