7. Use Pascal's Triangle to expand the binomial (2x + 2)¹. O 16x¹64x³ +96x² - 64x + 16 - 16x4 + 64x³ +96x²64x - 16 O 16x¹-64x³ - 96x² + 64x 16 1 O 16x¹ +64x³ +96x² + 64x + 16

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Question 7: Use Pascal's Triangle to Expand the Binomial (2x + 2)^4**

Choose the correct expanded form from the options below:

- Option A: \(16x^4 - 64x^3 + 96x^2 - 64x + 16\)
- Option B: \(16x^4 + 64x^3 + 96x^2 - 64x - 16\)
- Option C: \(16x^4 - 64x^3 - 96x^2 + 64x - 16\)
- Option D: \(16x^4 + 64x^3 + 96x^2 + 64x + 16\)

**Explanation of Pascal's Triangle:**
Pascal's Triangle is a triangular array of binomial coefficients. The coefficients correspond to the elements in the expansion of a binomial expression of the form \((a + b)^n\). For \((2x + 2)^4\), we use the fifth row of Pascal's Triangle, which is:

1, 4, 6, 4, 1

These coefficients multiply the terms in the expansion:

\[ (2x + 2)^4 = \sum_{k=0}^{4} \binom{4}{k} (2x)^{4-k} (2)^k \]

The expansion based on the coefficients and applying the binomial theorem is:

\[ = 1 \cdot (2x)^4 + 4 \cdot (2x)^3 \cdot (2) + 6 \cdot (2x)^2 \cdot (2)^2 + 4 \cdot (2x) \cdot (2)^3 + 1 \cdot (2)^4 \]
\[ = 16x^4 + 64x^3 + 96x^2 + 64x + 16 \]

Thus, the correct option is:

- Option D: \(16x^4 + 64x^3 + 96x^2 + 64x + 16\)
Transcribed Image Text:**Question 7: Use Pascal's Triangle to Expand the Binomial (2x + 2)^4** Choose the correct expanded form from the options below: - Option A: \(16x^4 - 64x^3 + 96x^2 - 64x + 16\) - Option B: \(16x^4 + 64x^3 + 96x^2 - 64x - 16\) - Option C: \(16x^4 - 64x^3 - 96x^2 + 64x - 16\) - Option D: \(16x^4 + 64x^3 + 96x^2 + 64x + 16\) **Explanation of Pascal's Triangle:** Pascal's Triangle is a triangular array of binomial coefficients. The coefficients correspond to the elements in the expansion of a binomial expression of the form \((a + b)^n\). For \((2x + 2)^4\), we use the fifth row of Pascal's Triangle, which is: 1, 4, 6, 4, 1 These coefficients multiply the terms in the expansion: \[ (2x + 2)^4 = \sum_{k=0}^{4} \binom{4}{k} (2x)^{4-k} (2)^k \] The expansion based on the coefficients and applying the binomial theorem is: \[ = 1 \cdot (2x)^4 + 4 \cdot (2x)^3 \cdot (2) + 6 \cdot (2x)^2 \cdot (2)^2 + 4 \cdot (2x) \cdot (2)^3 + 1 \cdot (2)^4 \] \[ = 16x^4 + 64x^3 + 96x^2 + 64x + 16 \] Thus, the correct option is: - Option D: \(16x^4 + 64x^3 + 96x^2 + 64x + 16\)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning