Find parametric equations for the line through the point P(-5,6,7) and perpendicular to the vectors u = - 6i + 7j + 7k and v = - 5i + 4j -7k. O A. x= -77t-5 y = 77t+ 6 Z= 11t + 7 O B. x= - 77t + 5 y = -77t-6 Z= - 7t-7 O D. x= - 77t-5 y = - 77t+6 Z = 11t +7 O C. x=-77t-5 y= - 77t+6 Z= - 7t+7
Find parametric equations for the line through the point P(-5,6,7) and perpendicular to the vectors u = - 6i + 7j + 7k and v = - 5i + 4j -7k. O A. x= -77t-5 y = 77t+ 6 Z= 11t + 7 O B. x= - 77t + 5 y = -77t-6 Z= - 7t-7 O D. x= - 77t-5 y = - 77t+6 Z = 11t +7 O C. x=-77t-5 y= - 77t+6 Z= - 7t+7
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Title: Finding Parametric Equations of a Line Perpendicular to Given Vectors**
**Task:**
Find parametric equations for the line through the point \( P(-5, 6, 7) \) and perpendicular to the vectors \( \mathbf{u} = -6\mathbf{i} + 7\mathbf{j} + 7\mathbf{k} \) and \( \mathbf{v} = -5\mathbf{i} + 4\mathbf{j} - 7\mathbf{k} \).
**Options:**
- **A:**
\[
\begin{align*}
x &= -77t - 5 \\
y &= 77t + 6 \\
z &= 11t + 7 \\
\end{align*}
\]
- **B:**
\[
\begin{align*}
x &= -77t + 5 \\
y &= -77t - 6 \\
z &= -7t - 7 \\
\end{align*}
\]
- **C:**
\[
\begin{align*}
x &= -77t - 5 \\
y &= -77t + 6 \\
z &= -7t + 7 \\
\end{align*}
\]
- **D:**
\[
\begin{align*}
x &= -77t - 5 \\
y &= -77t + 6 \\
z &= 11t + 7 \\
\end{align*}
\]
**Explanation:**
To construct the parametric equations of the line that passes through a point and is perpendicular to two vectors, we need to find the cross product of the two vectors to obtain a direction vector for the line. Then, using the point given, we can write the parametric equations utilizing this direction vector.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F12c62ea9-2423-4a35-a6cd-74646c6bbd41%2F9f5a0879-db86-4159-a533-c8b5a1b842cf%2F7dpxj4d_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title: Finding Parametric Equations of a Line Perpendicular to Given Vectors**
**Task:**
Find parametric equations for the line through the point \( P(-5, 6, 7) \) and perpendicular to the vectors \( \mathbf{u} = -6\mathbf{i} + 7\mathbf{j} + 7\mathbf{k} \) and \( \mathbf{v} = -5\mathbf{i} + 4\mathbf{j} - 7\mathbf{k} \).
**Options:**
- **A:**
\[
\begin{align*}
x &= -77t - 5 \\
y &= 77t + 6 \\
z &= 11t + 7 \\
\end{align*}
\]
- **B:**
\[
\begin{align*}
x &= -77t + 5 \\
y &= -77t - 6 \\
z &= -7t - 7 \\
\end{align*}
\]
- **C:**
\[
\begin{align*}
x &= -77t - 5 \\
y &= -77t + 6 \\
z &= -7t + 7 \\
\end{align*}
\]
- **D:**
\[
\begin{align*}
x &= -77t - 5 \\
y &= -77t + 6 \\
z &= 11t + 7 \\
\end{align*}
\]
**Explanation:**
To construct the parametric equations of the line that passes through a point and is perpendicular to two vectors, we need to find the cross product of the two vectors to obtain a direction vector for the line. Then, using the point given, we can write the parametric equations utilizing this direction vector.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning