Find f. f"(x) = 8x3 + 5, f(1) = 2, f'(1) = 3 %3D %3D f(x)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find the function \( f \).

Given:
- \( f''(x) = 8x^3 + 5 \)
- \( f(1) = 2 \)
- \( f'(1) = 3 \)

**Solution:**

We need to find \( f(x) \).

Begin by integrating \( f''(x) = 8x^3 + 5 \) to find \( f'(x) \).

1. Integrate \( f''(x) \):
   \[
   f'(x) = \int (8x^3 + 5) \, dx = 2x^4 + 5x + C
   \]
   where \( C \) is a constant.

2. Use the condition \( f'(1) = 3 \) to find \( C \):
   \[
   f'(1) = 2(1)^4 + 5(1) + C = 3
   \]
   \[
   2 + 5 + C = 3
   \]
   \[
   C = -4
   \]
   So, \( f'(x) = 2x^4 + 5x - 4 \).

3. Integrate \( f'(x) \) to find \( f(x) \):
   \[
   f(x) = \int (2x^4 + 5x - 4) \, dx = \frac{2}{5}x^5 + \frac{5}{2}x^2 - 4x + D
   \]
   where \( D \) is another constant.

4. Use the condition \( f(1) = 2 \) to find \( D \):
   \[
   f(1) = \frac{2}{5}(1)^5 + \frac{5}{2}(1)^2 - 4(1) + D = 2
   \]
   \[
   \frac{2}{5} + \frac{5}{2} - 4 + D = 2
   \]

   Simplifying:
   \[
   \frac{2}{5} + \frac{25}{10} - \frac{40}{10} + D = 2
   \]
   \[
   \frac{2}{5} + \frac
Transcribed Image Text:**Problem Statement:** Find the function \( f \). Given: - \( f''(x) = 8x^3 + 5 \) - \( f(1) = 2 \) - \( f'(1) = 3 \) **Solution:** We need to find \( f(x) \). Begin by integrating \( f''(x) = 8x^3 + 5 \) to find \( f'(x) \). 1. Integrate \( f''(x) \): \[ f'(x) = \int (8x^3 + 5) \, dx = 2x^4 + 5x + C \] where \( C \) is a constant. 2. Use the condition \( f'(1) = 3 \) to find \( C \): \[ f'(1) = 2(1)^4 + 5(1) + C = 3 \] \[ 2 + 5 + C = 3 \] \[ C = -4 \] So, \( f'(x) = 2x^4 + 5x - 4 \). 3. Integrate \( f'(x) \) to find \( f(x) \): \[ f(x) = \int (2x^4 + 5x - 4) \, dx = \frac{2}{5}x^5 + \frac{5}{2}x^2 - 4x + D \] where \( D \) is another constant. 4. Use the condition \( f(1) = 2 \) to find \( D \): \[ f(1) = \frac{2}{5}(1)^5 + \frac{5}{2}(1)^2 - 4(1) + D = 2 \] \[ \frac{2}{5} + \frac{5}{2} - 4 + D = 2 \] Simplifying: \[ \frac{2}{5} + \frac{25}{10} - \frac{40}{10} + D = 2 \] \[ \frac{2}{5} + \frac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning