Find f. f(t) f'(t) = t³ + -/-/7₁ t5 t> 0, f(1) = 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Problem Statement:**

We are given a derivative function \( f'(t) = t^5 + \frac{1}{t^7} \), with the condition \( t > 0 \). Additionally, we know that \( f(1) = 4 \).

**Objective:**

Find the function \( f(t) \).

**Solution Approach:**

To find \( f(t) \), we need to integrate the given derivative \( f'(t) \):

1. **Integrate** \( f'(t) \):
   \[
   f(t) = \int \left( t^5 + \frac{1}{t^7} \right) \, dt
   \]

2. **Integrate Each Term**:
   - \(\int t^5 \, dt = \frac{t^6}{6} + C_1\)
   - \(\int \frac{1}{t^7} \, dt = \int t^{-7} \, dt = \frac{t^{-6}}{-6} + C_2\)

3. **Combine Integrals**:
   \[
   f(t) = \frac{t^6}{6} - \frac{1}{6t^6} + C
   \]

4. **Apply Initial Condition** \( f(1) = 4 \) to find \( C \):
   \[
   f(1) = \frac{1^6}{6} - \frac{1}{6 \cdot 1^6} + C = 4 \\
   \frac{1}{6} - \frac{1}{6} + C = 4 \\
   C = 4
   \]

Hence, the function is:
\[ 
f(t) = \frac{t^6}{6} - \frac{1}{6t^6} + 4 
\]
Transcribed Image Text:**Problem Statement:** We are given a derivative function \( f'(t) = t^5 + \frac{1}{t^7} \), with the condition \( t > 0 \). Additionally, we know that \( f(1) = 4 \). **Objective:** Find the function \( f(t) \). **Solution Approach:** To find \( f(t) \), we need to integrate the given derivative \( f'(t) \): 1. **Integrate** \( f'(t) \): \[ f(t) = \int \left( t^5 + \frac{1}{t^7} \right) \, dt \] 2. **Integrate Each Term**: - \(\int t^5 \, dt = \frac{t^6}{6} + C_1\) - \(\int \frac{1}{t^7} \, dt = \int t^{-7} \, dt = \frac{t^{-6}}{-6} + C_2\) 3. **Combine Integrals**: \[ f(t) = \frac{t^6}{6} - \frac{1}{6t^6} + C \] 4. **Apply Initial Condition** \( f(1) = 4 \) to find \( C \): \[ f(1) = \frac{1^6}{6} - \frac{1}{6 \cdot 1^6} + C = 4 \\ \frac{1}{6} - \frac{1}{6} + C = 4 \\ C = 4 \] Hence, the function is: \[ f(t) = \frac{t^6}{6} - \frac{1}{6t^6} + 4 \]
Expert Solution
Step 1: Determine the given function

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning