Find f such that f'(x) = 10x - 7, f(8) = 0.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

Find the function \( f \) such that \( f'(x) = 10x - 7 \) and \( f(8) = 0 \).

#### Solution

To find the function \( f(x) \), we need to integrate the given derivative \( f'(x) = 10x - 7 \).

**Step 1: Integrate \( f'(x) \)**

Integrate the expression \( 10x - 7 \):

\[ \int (10x - 7) \, dx \]

The integral is:

\[ f(x) = \int 10x \, dx - \int 7 \, dx \]

\[ f(x) = 10 \left( \frac{x^2}{2} \right) - 7x + C \]

\[ f(x) = 5x^2 - 7x + C \]

Here, \( C \) is the constant of integration.

**Step 2: Determine the constant \( C \)**

We use the initial condition \( f(8) = 0 \):

\[ f(8) = 5(8)^2 - 7(8) + C = 0 \]

\[ 5(64) - 56 + C = 0 \]

\[ 320 - 56 + C = 0 \]

\[ 264 + C = 0 \]

\[ C = -264 \]

**Final Function**

Therefore, the function \( f(x) \) is:

\[ f(x) = 5x^2 - 7x - 264 \]

### Answer

\[ f(x) = 5x^2 - 7x - 264 \]

This is the required function \( f \) that satisfies the given conditions.
Transcribed Image Text:### Problem Statement Find the function \( f \) such that \( f'(x) = 10x - 7 \) and \( f(8) = 0 \). #### Solution To find the function \( f(x) \), we need to integrate the given derivative \( f'(x) = 10x - 7 \). **Step 1: Integrate \( f'(x) \)** Integrate the expression \( 10x - 7 \): \[ \int (10x - 7) \, dx \] The integral is: \[ f(x) = \int 10x \, dx - \int 7 \, dx \] \[ f(x) = 10 \left( \frac{x^2}{2} \right) - 7x + C \] \[ f(x) = 5x^2 - 7x + C \] Here, \( C \) is the constant of integration. **Step 2: Determine the constant \( C \)** We use the initial condition \( f(8) = 0 \): \[ f(8) = 5(8)^2 - 7(8) + C = 0 \] \[ 5(64) - 56 + C = 0 \] \[ 320 - 56 + C = 0 \] \[ 264 + C = 0 \] \[ C = -264 \] **Final Function** Therefore, the function \( f(x) \) is: \[ f(x) = 5x^2 - 7x - 264 \] ### Answer \[ f(x) = 5x^2 - 7x - 264 \] This is the required function \( f \) that satisfies the given conditions.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning