Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
3.2 5
![**Problem:**
Find the double integral \( \int_{3}^{4} \int_{3}^{6} xy \, dy \, dx \). Write your answer in exact form.
---
**Solution:**
To solve this problem, we need to evaluate the given double integral, which models the volume under the surface \( z = xy \) over the specified region in the \( xy \)-plane.
**Steps:**
1. **Evaluate the Inner Integral:**
The inner integral is with respect to \( y \), from 3 to 6:
\[
\int_{3}^{6} xy \, dy
\]
Treat \( x \) as a constant:
\[
= x \int_{3}^{6} y \, dy
\]
The antiderivative of \( y \) is \( \frac{y^2}{2} \), so:
\[
= x \left[ \frac{y^2}{2} \right]_{3}^{6}
\]
\[
= x \left( \frac{6^2}{2} - \frac{3^2}{2} \right)
\]
\[
= x \left( \frac{36}{2} - \frac{9}{2} \right)
\]
\[
= x \left( 18 - 4.5 \right)
\]
\[
= x \times 13.5
\]
\[
= 13.5x
\]
2. **Evaluate the Outer Integral:**
Now integrate with respect to \( x \), from 3 to 4:
\[
\int_{3}^{4} 13.5x \, dx
\]
The antiderivative of \( 13.5x \) is \( \frac{13.5x^2}{2} \), so:
\[
= \left[ \frac{13.5x^2}{2} \right]_{3}^{4}
\]
\[
= \frac{13.5}{2} \left( 4^2 - 3^2 \right)
\]
\[
= \frac{13.5}{2} \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4e39a1d0-143c-41f0-ae59-e967e0535bad%2F0c967e03-1d6f-46e7-9865-b5232d3d372f%2Fp9s4lcs_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem:**
Find the double integral \( \int_{3}^{4} \int_{3}^{6} xy \, dy \, dx \). Write your answer in exact form.
---
**Solution:**
To solve this problem, we need to evaluate the given double integral, which models the volume under the surface \( z = xy \) over the specified region in the \( xy \)-plane.
**Steps:**
1. **Evaluate the Inner Integral:**
The inner integral is with respect to \( y \), from 3 to 6:
\[
\int_{3}^{6} xy \, dy
\]
Treat \( x \) as a constant:
\[
= x \int_{3}^{6} y \, dy
\]
The antiderivative of \( y \) is \( \frac{y^2}{2} \), so:
\[
= x \left[ \frac{y^2}{2} \right]_{3}^{6}
\]
\[
= x \left( \frac{6^2}{2} - \frac{3^2}{2} \right)
\]
\[
= x \left( \frac{36}{2} - \frac{9}{2} \right)
\]
\[
= x \left( 18 - 4.5 \right)
\]
\[
= x \times 13.5
\]
\[
= 13.5x
\]
2. **Evaluate the Outer Integral:**
Now integrate with respect to \( x \), from 3 to 4:
\[
\int_{3}^{4} 13.5x \, dx
\]
The antiderivative of \( 13.5x \) is \( \frac{13.5x^2}{2} \), so:
\[
= \left[ \frac{13.5x^2}{2} \right]_{3}^{4}
\]
\[
= \frac{13.5}{2} \left( 4^2 - 3^2 \right)
\]
\[
= \frac{13.5}{2} \
Expert Solution

Step 1: Define the problem
The given integral
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning