**Linear Systems and Consistency Problems** **Exercises 15 and 16:** Determine if the systems are consistent. Do not completely solve the systems. 15. \[ \begin{cases} x_1 - 6x_2 = 5 \\ x_2 - 4x_3 + x_4 = 0 \\ -x_1 + 6x_2 + x_3 + 5x_4 = 3 \\ -x_2 + 5x_3 + 4x_4 = 0 \\ \end{cases} \] 16. \[ \begin{cases} 2x_1 - 4x_4 = -10 \\ 3x_2 + 3x_3 = 0 \\ x_3 + 4x_4 = -1 \\ -3x_1 + 2x_2 + 3x_3 + x_4 = 5 \\ \end{cases} \] **Exercise 17:** Do the three lines \(2x_1 + 3x_2 = -1\), \(6x_1 + 5x_2 = 0\), and \(2x_1 - 5x_2 = 7\) have a common point of intersection? Explain. **Exercise 18:** Do the three planes \(2x_1 + 4x_2 + 4x_3 = 4\), \(x_2 - 2x_3 = -2\), and \(2x_1 + 3x_2 = 0\) have at least one common point of intersection? Explain. **Exercises 19-22:** Determine the value(s) of \(h\) such that the matrix is the augmented matrix of a consistent linear system. 19. \[ \begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \\ \end{bmatrix} \] 20. \[ \begin{bmatrix} 1 & h & -5 \\ 2 & -8 & 6 \\ \end{bmatrix} \] 21. \[ \begin{bmatrix} 1 & 4 & -2 \\ 3 & h & -6 \\ \end{bmatrix} \] 22. \[ \begin{bmatrix} -4 & 12

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Number 16 1.1

**Linear Systems and Consistency Problems**

**Exercises 15 and 16:** Determine if the systems are consistent. Do not completely solve the systems.

15.
\[
\begin{cases}
x_1 - 6x_2 = 5 \\
x_2 - 4x_3 + x_4 = 0 \\
-x_1 + 6x_2 + x_3 + 5x_4 = 3 \\
-x_2 + 5x_3 + 4x_4 = 0 \\
\end{cases}
\]

16.
\[
\begin{cases}
2x_1 - 4x_4 = -10 \\
3x_2 + 3x_3 = 0 \\
x_3 + 4x_4 = -1 \\
-3x_1 + 2x_2 + 3x_3 + x_4 = 5 \\
\end{cases}
\]

**Exercise 17:** Do the three lines \(2x_1 + 3x_2 = -1\), \(6x_1 + 5x_2 = 0\), and \(2x_1 - 5x_2 = 7\) have a common point of intersection? Explain.

**Exercise 18:** Do the three planes \(2x_1 + 4x_2 + 4x_3 = 4\), \(x_2 - 2x_3 = -2\), and \(2x_1 + 3x_2 = 0\) have at least one common point of intersection? Explain.

**Exercises 19-22:** Determine the value(s) of \(h\) such that the matrix is the augmented matrix of a consistent linear system.

19.
\[
\begin{bmatrix}
1 & h & 4 \\
3 & 6 & 8 \\
\end{bmatrix}
\]

20.
\[
\begin{bmatrix}
1 & h & -5 \\
2 & -8 & 6 \\
\end{bmatrix}
\]

21.
\[
\begin{bmatrix}
1 & 4 & -2 \\
3 & h & -6 \\
\end{bmatrix}
\]

22.
\[
\begin{bmatrix}
-4 & 12
Transcribed Image Text:**Linear Systems and Consistency Problems** **Exercises 15 and 16:** Determine if the systems are consistent. Do not completely solve the systems. 15. \[ \begin{cases} x_1 - 6x_2 = 5 \\ x_2 - 4x_3 + x_4 = 0 \\ -x_1 + 6x_2 + x_3 + 5x_4 = 3 \\ -x_2 + 5x_3 + 4x_4 = 0 \\ \end{cases} \] 16. \[ \begin{cases} 2x_1 - 4x_4 = -10 \\ 3x_2 + 3x_3 = 0 \\ x_3 + 4x_4 = -1 \\ -3x_1 + 2x_2 + 3x_3 + x_4 = 5 \\ \end{cases} \] **Exercise 17:** Do the three lines \(2x_1 + 3x_2 = -1\), \(6x_1 + 5x_2 = 0\), and \(2x_1 - 5x_2 = 7\) have a common point of intersection? Explain. **Exercise 18:** Do the three planes \(2x_1 + 4x_2 + 4x_3 = 4\), \(x_2 - 2x_3 = -2\), and \(2x_1 + 3x_2 = 0\) have at least one common point of intersection? Explain. **Exercises 19-22:** Determine the value(s) of \(h\) such that the matrix is the augmented matrix of a consistent linear system. 19. \[ \begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \\ \end{bmatrix} \] 20. \[ \begin{bmatrix} 1 & h & -5 \\ 2 & -8 & 6 \\ \end{bmatrix} \] 21. \[ \begin{bmatrix} 1 & 4 & -2 \\ 3 & h & -6 \\ \end{bmatrix} \] 22. \[ \begin{bmatrix} -4 & 12
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Algebraic Operations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,