Exercise 12.2. Let F be a field and n Є N. (1) For every subset S of F", show that I(S) := {f(x1, . ,xn) Є F[x1,...,xn] | f (a₁,, an) = 0, V(a1, ..., an) E S} is an ideal of the polynomial ring F[x1, ..., xn], called the vanishing ideal of S. (2) Given two subsets S and T of F", prove or disprove that I(SUT) = I(S)NI(T) · and I(SNT) = I(S) + I(T).
Exercise 12.2. Let F be a field and n Є N. (1) For every subset S of F", show that I(S) := {f(x1, . ,xn) Є F[x1,...,xn] | f (a₁,, an) = 0, V(a1, ..., an) E S} is an ideal of the polynomial ring F[x1, ..., xn], called the vanishing ideal of S. (2) Given two subsets S and T of F", prove or disprove that I(SUT) = I(S)NI(T) · and I(SNT) = I(S) + I(T).
Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter8: Polynomials
Section8.2: Divisibility And Greatest Common Divisor
Problem 34E
Related questions
Question
![Exercise 12.2. Let F be a field and n Є N.
(1) For every subset S of F", show that
I(S) := {f(x1,
.
,xn) Є F[x1,...,xn] | f (a₁,, an) = 0, V(a1,
..., an) E S}
is an ideal of the polynomial ring F[x1, ..., xn], called the vanishing ideal of S.
(2) Given two subsets S and T of F", prove or disprove that
I(SUT) = I(S)NI(T)
·
and
I(SNT) = I(S) + I(T).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff2e948f6-fd6f-485f-942e-c931230f8579%2Ffa271370-22ab-47d4-90c9-a7594e478e73%2Fcgt1f8c_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Exercise 12.2. Let F be a field and n Є N.
(1) For every subset S of F", show that
I(S) := {f(x1,
.
,xn) Є F[x1,...,xn] | f (a₁,, an) = 0, V(a1,
..., an) E S}
is an ideal of the polynomial ring F[x1, ..., xn], called the vanishing ideal of S.
(2) Given two subsets S and T of F", prove or disprove that
I(SUT) = I(S)NI(T)
·
and
I(SNT) = I(S) + I(T).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Modern Algebra](https://www.bartleby.com/isbn_cover_images/9781285463230/9781285463230_smallCoverImage.gif)
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305071742/9781305071742_smallCoverImage.gif)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
![Elements Of Modern Algebra](https://www.bartleby.com/isbn_cover_images/9781285463230/9781285463230_smallCoverImage.gif)
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305071742/9781305071742_smallCoverImage.gif)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)