Exercise 1.1. Antonia and Bob cannot decide where to go to dinner. Antonia proposes the following procedure: Antonia will write on a piece of paper either the number 2 or the number 4 or the number 6, while Bob will write on his piece of paper either the number 1 or 3 or 5. They will write their numbers secretly and independently. They then will show each other what they wrote and choose a restaurant according to the following rule: if the sum of the two numbers is 5 or less, they will go to a Mexican restaurant, if the sum is 7 they will go to an Italian restaurant and if the number is 9 or more they will go to a Japanese restaurant. (a) Let Antonia be Player 1 and Bob Player 2. Represent this situation as a game frame, first by writing out each element of the quadruple of Definition 1.1 and then by using a table (label the rows with Antonia's strategies and the columns with Bob's strategies, so that we can think of Antonia as choosing the row and Bob as choosing the column). (b) Suppose that Antonia and Bob have the following preferences (where M stands for 'Mexican', / for 'Italian' and ✓ for 'Japanese). For Antonia: I> J; for Bob: M> Antonia Antonia Bob M Bob J. Using utility function with values 1, 2 and 3 represent the corresponding reduced-form game as a table. Exercise 1.2. Consider the following two-player game-frame where each player is given a set of cards and each card has a number on it. The players are Antonia (Player 1) and Bob (Player 2). Antonia's cards have the following numbers (one number on each card): 2, 4 and 6, whereas Bob's cards are marked 0, 1 and 2 (thus different numbers from the previous exercise). Antonia chooses one of hers own cards and Bob chooses one of his own cards: this is done without knowing the other player's choice. The outcome depends on the sum of the points of the chosen cards, as follows. If the sum of points on the two chosen cards is greater than or equal to 5, Antonia gets $10 minus that sum; otherwise (that is, if the sum is less than 5) she gets nothing; furthermore, if the sum of points is an odd number, Bob gets as many dollars as that sum; if the sum of points turns out to be an even number and is less than or equal to 6, Bob gets $2; otherwise he gets nothing. (a) Represent the game-frame described above by means of a table. As in the previous exercise, assign the rows to Antonia and the columns to Bob. (b) Using the game-frame of part (a) obtain a reduced-form game by adding the information that each player is selfish and greedy. This means that each player only cares about how much money he/she gets and prefers more money to less.
Exercise 1.1. Antonia and Bob cannot decide where to go to dinner. Antonia proposes the following procedure: Antonia will write on a piece of paper either the number 2 or the number 4 or the number 6, while Bob will write on his piece of paper either the number 1 or 3 or 5. They will write their numbers secretly and independently. They then will show each other what they wrote and choose a restaurant according to the following rule: if the sum of the two numbers is 5 or less, they will go to a Mexican restaurant, if the sum is 7 they will go to an Italian restaurant and if the number is 9 or more they will go to a Japanese restaurant. (a) Let Antonia be Player 1 and Bob Player 2. Represent this situation as a game frame, first by writing out each element of the quadruple of Definition 1.1 and then by using a table (label the rows with Antonia's strategies and the columns with Bob's strategies, so that we can think of Antonia as choosing the row and Bob as choosing the column). (b) Suppose that Antonia and Bob have the following preferences (where M stands for 'Mexican', / for 'Italian' and ✓ for 'Japanese). For Antonia: I> J; for Bob: M> Antonia Antonia Bob M Bob J. Using utility function with values 1, 2 and 3 represent the corresponding reduced-form game as a table. Exercise 1.2. Consider the following two-player game-frame where each player is given a set of cards and each card has a number on it. The players are Antonia (Player 1) and Bob (Player 2). Antonia's cards have the following numbers (one number on each card): 2, 4 and 6, whereas Bob's cards are marked 0, 1 and 2 (thus different numbers from the previous exercise). Antonia chooses one of hers own cards and Bob chooses one of his own cards: this is done without knowing the other player's choice. The outcome depends on the sum of the points of the chosen cards, as follows. If the sum of points on the two chosen cards is greater than or equal to 5, Antonia gets $10 minus that sum; otherwise (that is, if the sum is less than 5) she gets nothing; furthermore, if the sum of points is an odd number, Bob gets as many dollars as that sum; if the sum of points turns out to be an even number and is less than or equal to 6, Bob gets $2; otherwise he gets nothing. (a) Represent the game-frame described above by means of a table. As in the previous exercise, assign the rows to Antonia and the columns to Bob. (b) Using the game-frame of part (a) obtain a reduced-form game by adding the information that each player is selfish and greedy. This means that each player only cares about how much money he/she gets and prefers more money to less.
Chapter1: Taking Risks And Making Profits Within The Dynamic Business Environment
Section: Chapter Questions
Problem 1CE
Related questions
Question
Only economics experts solve it correct complete solutions okk no chat gpt use okk
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images
Recommended textbooks for you
Understanding Business
Management
ISBN:
9781259929434
Author:
William Nickels
Publisher:
McGraw-Hill Education
Management (14th Edition)
Management
ISBN:
9780134527604
Author:
Stephen P. Robbins, Mary A. Coulter
Publisher:
PEARSON
Spreadsheet Modeling & Decision Analysis: A Pract…
Management
ISBN:
9781305947412
Author:
Cliff Ragsdale
Publisher:
Cengage Learning
Understanding Business
Management
ISBN:
9781259929434
Author:
William Nickels
Publisher:
McGraw-Hill Education
Management (14th Edition)
Management
ISBN:
9780134527604
Author:
Stephen P. Robbins, Mary A. Coulter
Publisher:
PEARSON
Spreadsheet Modeling & Decision Analysis: A Pract…
Management
ISBN:
9781305947412
Author:
Cliff Ragsdale
Publisher:
Cengage Learning
Management Information Systems: Managing The Digi…
Management
ISBN:
9780135191798
Author:
Kenneth C. Laudon, Jane P. Laudon
Publisher:
PEARSON
Business Essentials (12th Edition) (What's New in…
Management
ISBN:
9780134728391
Author:
Ronald J. Ebert, Ricky W. Griffin
Publisher:
PEARSON
Fundamentals of Management (10th Edition)
Management
ISBN:
9780134237473
Author:
Stephen P. Robbins, Mary A. Coulter, David A. De Cenzo
Publisher:
PEARSON