EXAMPLE 1.4 Interpreting radial distribution functions Figure 1.12 shows the radial distribution functions for 2s and 2p hydrogenic orbitals. Which orbital gives the electron a greater probability of close approach to the nucleus? Answer By examining Figure 1.12 we can see that the radial distribution function of a 2p orbital approaches zero near the nucleus faster than a 2s electron does. This difference is a consequence of the fact that a 2p orbital has zero amplitude at the nucleus on account of its orbital angular momentum.The 2s electron has a greater probability of close approach to the nucleus, indicated by the inner maximum. Self-test 1.4 Which orbital, 3p or 3d, gives an electron a greater probability of being found close to the nucleus? (g) The angular variation of atomic orbitals Key points: The boundary surface of an orbital indicates the region of space within which the electron Radial distribution function, FR² O 2p 2s Radius, Zrla 15

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
EXAMPLE 1.4 Interpreting radial distribution functions
Figure 1.12 shows the radial distribution functions for 2s and 2p hydrogenic orbitals. Which orbital gives
the electron a greater probability of close approach to the nucleus?
Answer By examining Figure 1.12 we can see that the radial distribution function of a 2p orbital approaches
zero near the nucleus faster than a 2s electron does. This difference is a consequence of the fact that a 2p
orbital has zero amplitude at the nucleus on account of its orbital angular momentum.The 2s electron has
a greater probability of close approach to the nucleus, indicated by the inner maximum.
Self-test 1.4 Which orbital, 3p or 3d, gives an electron a greater probability of being found close to the
nucleus?
(g) The angular variation of atomic orbitals
Key points: The boundary surface of an orbital indicates the region of space within which the electron
Radial distribution function, R²
0
A
2s
Radius, Zrla
15
Transcribed Image Text:EXAMPLE 1.4 Interpreting radial distribution functions Figure 1.12 shows the radial distribution functions for 2s and 2p hydrogenic orbitals. Which orbital gives the electron a greater probability of close approach to the nucleus? Answer By examining Figure 1.12 we can see that the radial distribution function of a 2p orbital approaches zero near the nucleus faster than a 2s electron does. This difference is a consequence of the fact that a 2p orbital has zero amplitude at the nucleus on account of its orbital angular momentum.The 2s electron has a greater probability of close approach to the nucleus, indicated by the inner maximum. Self-test 1.4 Which orbital, 3p or 3d, gives an electron a greater probability of being found close to the nucleus? (g) The angular variation of atomic orbitals Key points: The boundary surface of an orbital indicates the region of space within which the electron Radial distribution function, R² 0 A 2s Radius, Zrla 15
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

How do i interpret the radial distribution function?

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Techniques and Applications of Quantum Theory
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY