Evaluate the integral from -∞ to ∞ of the expression exp ip²t 2mħ 4ah² + ipad + fact that the integral from -∞ to ∞ of exp(-a²x² + bx) dx equals exp problem. a 6² 4a² dp. Use the to solve the

icon
Related questions
Question
**Problem Statement:**

Evaluate the integral from \(-\infty\) to \(\infty\) of the expression:

\[
\exp\left( -\frac{p^2}{4 \alpha \hbar^2} + \frac{ipx}{\hbar} + \frac{ip^2 t}{2 m \hbar} \right) \, dp.
\]

**Hint:** Use the fact that the integral from \(-\infty\) to \(\infty\) of 

\[
\exp\left( -a^2 x^2 + bx \right) \, dx
\] 

equals 

\[
\sqrt{\frac{\pi}{a}} \, \exp\left( \frac{b^2}{4a^2} \right)
\] 

to solve the problem.
Transcribed Image Text:**Problem Statement:** Evaluate the integral from \(-\infty\) to \(\infty\) of the expression: \[ \exp\left( -\frac{p^2}{4 \alpha \hbar^2} + \frac{ipx}{\hbar} + \frac{ip^2 t}{2 m \hbar} \right) \, dp. \] **Hint:** Use the fact that the integral from \(-\infty\) to \(\infty\) of \[ \exp\left( -a^2 x^2 + bx \right) \, dx \] equals \[ \sqrt{\frac{\pi}{a}} \, \exp\left( \frac{b^2}{4a^2} \right) \] to solve the problem.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer