Estimate the enthalpy change for the reaction: 2CO + O2 ⟶2CO2 given the following bond energies. BE(C O) = 1074 kJ/mol BE(O=O) = 499 kJ/mol BE(C=O) = 802 kJ/mol Hint: You need to draw the Lewis Structures of the compounds to know the bonds present. Group of answer choices +2380 kJ/mol -561 kJ/mol +744 kJ/mol +1949 kJ/mol -744 kJ/mol
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
Estimate the enthalpy change for the reaction:
2CO + O2 ⟶2CO2
given the following bond energies.
BE(C O) = 1074 kJ/mol
BE(O=O) = 499 kJ/mol
BE(C=O) = 802 kJ/mol
Hint: You need to draw the Lewis Structures of the compounds to know the bonds present.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images