Epilepsy is a condition which results in seizures stemming from excessive or abnormal activity of neurons. This can occur either from hyperexcitability of excitatory neurons, or impairment of inhibitory neurons. That is to say, either the excitatory pathways become overactive, or the inhibitory pathways, designed to temper the excitatory pathways, are not active enough. Much of the research done on epilepsy focuses on voltage-gated sodium channels, and to date over 700 different mutations to the channel have been identified as playing a role in epilepsy. The means by which these mutations contribute to epilepsy is quite complex, but for the sake of this CAL, let's simplify and apply what we have learned so far to identify potential mechanisms for this condition. In what way could voltage-gated sodium channels be affected in excitatory neurons which would increase the likelihood of the neuron firing an action potential? (one correct answer) The inactivation gate is slower to close. The channel takes longer to reset to its original position ('ready state'). The channel is activated at a more negative membrane potential. O The channel has a lower permeability to Nat compared to normal. O Any of the above mechanisms could make the cell more likely to fire an action potential.
Epilepsy is a condition which results in seizures stemming from excessive or abnormal activity of neurons. This can occur either from hyperexcitability of excitatory neurons, or impairment of inhibitory neurons. That is to say, either the excitatory pathways become overactive, or the inhibitory pathways, designed to temper the excitatory pathways, are not active enough. Much of the research done on epilepsy focuses on voltage-gated sodium channels, and to date over 700 different mutations to the channel have been identified as playing a role in epilepsy. The means by which these mutations contribute to epilepsy is quite complex, but for the sake of this CAL, let's simplify and apply what we have learned so far to identify potential mechanisms for this condition. In what way could voltage-gated sodium channels be affected in excitatory neurons which would increase the likelihood of the neuron firing an action potential? (one correct answer) The inactivation gate is slower to close. The channel takes longer to reset to its original position ('ready state'). The channel is activated at a more negative membrane potential. O The channel has a lower permeability to Nat compared to normal. O Any of the above mechanisms could make the cell more likely to fire an action potential.
Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:Elaine N. Marieb, Katja N. Hoehn
Chapter1: The Human Body: An Orientation
Section: Chapter Questions
Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Recommended textbooks for you
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:
9780815344322
Author:
Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:
W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:
9781260159363
Author:
Martin, Terry R., Prentice-craver, Cynthia
Publisher:
McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:
9781260231700
Author:
Sylvia S. Mader, Michael Windelspecht
Publisher:
McGraw Hill Education