Energy Conduction band Filled states Band Emitted gap AEhund photon Empty states Filed Valence band states FIGURE P29.70 Energy-level diagram of an LED.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Light-emitting diodes, known by the acronym LED, produce the familiar green and red indicator lights used in a wide variety of consumer electronics. LEDs are semiconductor devices in which the electrons can exist only in certain energy levels. Much like molecules, the energy levels are packed together close enough to form what appears to be a continuous band of possible energies. Energy supplied to an LED in a circuit excites electrons from a valence band into a conduction band. An electron can emit a photon by undergoing a quantum jump from a state in the conduction band into an empty state in the valence band, as shown. The size of the band gap ΔEband determines the possible energies— and thus the wavelengths—of the emitted photons. Most LEDs emit a narrow range of wavelengths and thus have a distinct color. This makes them well-suited for traffic lights and other applications where a certain color is desired, but it makes them less desirable for general illumination. One way to make a “white” LED is to combine a blue LED with a substance that fluoresces yellow when illuminated with the blue light. The combination of the two colors makes light that appears reasonably white. 

An LED emits green light. Increasing the size of the band gap could change the color of the emitted light to
A. Red        B. Orange
C. Yellow    D. Blue

Energy
Conduction band
Filled
states
Band
Emitted
gap
AEhund
photon
Empty
states
Filed
Valence band
states
FIGURE P29.70 Energy-level diagram of an LED.
Transcribed Image Text:Energy Conduction band Filled states Band Emitted gap AEhund photon Empty states Filed Valence band states FIGURE P29.70 Energy-level diagram of an LED.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Band Theory
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON