du* əv* + ах ду du' du u". ·+v². əx* dy* ·+vº ƏT* əx* where p* = P, Re₁ = ², and Pr = Derive the dimensionless forms of the B.L. equations by substituting the various dimensionless variables/parameters into the dimensional B.L. equations and performing the requisite algebraic manipulations consider the conservation of mass equation: ƏT* 1 8²T* dy Re, Pray² dp' 1 0²u* dx* Re, Əy*² du əv əx əy = 0
du* əv* + ах ду du' du u". ·+v². əx* dy* ·+vº ƏT* əx* where p* = P, Re₁ = ², and Pr = Derive the dimensionless forms of the B.L. equations by substituting the various dimensionless variables/parameters into the dimensional B.L. equations and performing the requisite algebraic manipulations consider the conservation of mass equation: ƏT* 1 8²T* dy Re, Pray² dp' 1 0²u* dx* Re, Əy*² du əv əx əy = 0
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![### Educational Content on Dimensionless Boundary Layer Equations
Below are the steps to deriving the dimensionless forms of the Boundary Layer (B.L.) equations by substituting dimensionless variables/parameters. The primary focus is on performing algebraic manipulations and considering the conservation of the mass equation.
#### Equations:
1. **Continuity Equation:**
\[
\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0
\]
2. **Momentum Equation:**
\[
u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = -\frac{\partial p^*}{\partial x^*} + \frac{1}{Re} \frac{\partial^2 u^*}{\partial y^{*2}}
\]
3. **Energy Equation:**
\[
u^* \frac{\partial T^*}{\partial x^*} + v^* \frac{\partial T^*}{\partial y^*} = \frac{1}{Re \, Pr} \frac{\partial^2 T^*}{\partial y^{*2}}
\]
#### Dimensionless Variables:
- \( p^* = \frac{p}{\rho_0 u_0^2} \)
- \( Re = \frac{u_0 L}{\nu} \)
- \( Pr = \frac{\nu}{\alpha} \)
#### Procedure:
1. **Substitution:**
- Introduce dimensionless variables/parameters into the dimensional B.L. equations.
2. **Algebraic Manipulation:**
- Carry out requisite algebraic transformations to simplify the equations.
3. **Conservation of Mass:**
- The conservation of mass equation is given by:
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]
This framework aids in the understanding of fluid dynamics and heat transfer in boundary layers, emphasizing the transformation from dimensional to dimensionless forms for analytical convenience.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa0e11f2c-0748-41d1-a22b-011a77d365df%2F3fa9b307-931c-4550-9800-b4f429e6c5ae%2Fepadstu_processed.png&w=3840&q=75)
Transcribed Image Text:### Educational Content on Dimensionless Boundary Layer Equations
Below are the steps to deriving the dimensionless forms of the Boundary Layer (B.L.) equations by substituting dimensionless variables/parameters. The primary focus is on performing algebraic manipulations and considering the conservation of the mass equation.
#### Equations:
1. **Continuity Equation:**
\[
\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0
\]
2. **Momentum Equation:**
\[
u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = -\frac{\partial p^*}{\partial x^*} + \frac{1}{Re} \frac{\partial^2 u^*}{\partial y^{*2}}
\]
3. **Energy Equation:**
\[
u^* \frac{\partial T^*}{\partial x^*} + v^* \frac{\partial T^*}{\partial y^*} = \frac{1}{Re \, Pr} \frac{\partial^2 T^*}{\partial y^{*2}}
\]
#### Dimensionless Variables:
- \( p^* = \frac{p}{\rho_0 u_0^2} \)
- \( Re = \frac{u_0 L}{\nu} \)
- \( Pr = \frac{\nu}{\alpha} \)
#### Procedure:
1. **Substitution:**
- Introduce dimensionless variables/parameters into the dimensional B.L. equations.
2. **Algebraic Manipulation:**
- Carry out requisite algebraic transformations to simplify the equations.
3. **Conservation of Mass:**
- The conservation of mass equation is given by:
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]
This framework aids in the understanding of fluid dynamics and heat transfer in boundary layers, emphasizing the transformation from dimensional to dimensionless forms for analytical convenience.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 15 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY