DJI FTSE100 DAX CAC40 NIKKEI HSI BOVESPA GOLD 4-Jan-16 15944.46 5990.4 9880.82 4380.36 17163.92 19052.45 38376 1115 1-Dec-15 17425.03 6242.3 10743.01 4637.06 19033.71 21914.4 43350 1068.25 2-Nov-15 17719.92 6356.1 11382.23 4957.6 19747.47 21996.42 45120 1086.44 1-Oct-15 17663.54 6361.1 10850.14 4897.66 19083.1 22640.04 45869 1159.25 1-Sep-15 16284.7 6061.6 9660.44 4455.29 17388.15 20846.3 45059 1124.77 3-Aug-15 16528.03 6247.9 10259.46 4652.95 18890.48 21670.58 46626 1117.93 1-Jul-15 17689.86 6696.3 11308.99 5082.61 20585.24 24636.28 50865 1128.31 1-Jun-15 17619.51 6521 10944.97 4790.2 20235.73 26250.03 53081 1181.5 ####### 18010.68 6984.4 11413.82 5007.89 20563.15 27424.19 52760 1198.63 1-Apr-15 17840.52 6960.6 11454.38 5046.49 19520.01 28133 56229 1198.93 2-Mar-15 17776.12 6773 11966.17 5033.64 19206.99 24900.89 51150 1178.63 2-Feb-15 18132.7 6946.7 11401.66 4951.48 18797.94 24823.29 51583 1227.08 2-Jan-15 17164.95 6749.4 10694.32 4604.25 17674.39 24507.05 46908 1250.75 Compute the covariance matrix and state the variance for the Nikkei index. What are the smallest and largest values of the target returns which seem sensible, i.e., beyond which the minimum variance portfolio model will not change its answer?
DJI FTSE100 DAX CAC40 NIKKEI HSI BOVESPA GOLD 4-Jan-16 15944.46 5990.4 9880.82 4380.36 17163.92 19052.45 38376 1115 1-Dec-15 17425.03 6242.3 10743.01 4637.06 19033.71 21914.4 43350 1068.25 2-Nov-15 17719.92 6356.1 11382.23 4957.6 19747.47 21996.42 45120 1086.44 1-Oct-15 17663.54 6361.1 10850.14 4897.66 19083.1 22640.04 45869 1159.25 1-Sep-15 16284.7 6061.6 9660.44 4455.29 17388.15 20846.3 45059 1124.77 3-Aug-15 16528.03 6247.9 10259.46 4652.95 18890.48 21670.58 46626 1117.93 1-Jul-15 17689.86 6696.3 11308.99 5082.61 20585.24 24636.28 50865 1128.31 1-Jun-15 17619.51 6521 10944.97 4790.2 20235.73 26250.03 53081 1181.5 ####### 18010.68 6984.4 11413.82 5007.89 20563.15 27424.19 52760 1198.63 1-Apr-15 17840.52 6960.6 11454.38 5046.49 19520.01 28133 56229 1198.93 2-Mar-15 17776.12 6773 11966.17 5033.64 19206.99 24900.89 51150 1178.63 2-Feb-15 18132.7 6946.7 11401.66 4951.48 18797.94 24823.29 51583 1227.08 2-Jan-15 17164.95 6749.4 10694.32 4604.25 17674.39 24507.05 46908 1250.75 Compute the covariance matrix and state the variance for the Nikkei index. What are the smallest and largest values of the target returns which seem sensible, i.e., beyond which the minimum variance portfolio model will not change its answer?
Chapter5: Operating Activities: Purchases And Cash Payments
Section: Chapter Questions
Problem 2.1C
Related questions
Question
DJI | FTSE100 | DAX | CAC40 | NIKKEI | HSI | BOVESPA | GOLD | |
4-Jan-16 | 15944.46 | 5990.4 | 9880.82 | 4380.36 | 17163.92 | 19052.45 | 38376 | 1115 |
1-Dec-15 | 17425.03 | 6242.3 | 10743.01 | 4637.06 | 19033.71 | 21914.4 | 43350 | 1068.25 |
2-Nov-15 | 17719.92 | 6356.1 | 11382.23 | 4957.6 | 19747.47 | 21996.42 | 45120 | 1086.44 |
1-Oct-15 | 17663.54 | 6361.1 | 10850.14 | 4897.66 | 19083.1 | 22640.04 | 45869 | 1159.25 |
1-Sep-15 | 16284.7 | 6061.6 | 9660.44 | 4455.29 | 17388.15 | 20846.3 | 45059 | 1124.77 |
3-Aug-15 | 16528.03 | 6247.9 | 10259.46 | 4652.95 | 18890.48 | 21670.58 | 46626 | 1117.93 |
1-Jul-15 | 17689.86 | 6696.3 | 11308.99 | 5082.61 | 20585.24 | 24636.28 | 50865 | 1128.31 |
1-Jun-15 | 17619.51 | 6521 | 10944.97 | 4790.2 | 20235.73 | 26250.03 | 53081 | 1181.5 |
####### | 18010.68 | 6984.4 | 11413.82 | 5007.89 | 20563.15 | 27424.19 | 52760 | 1198.63 |
1-Apr-15 | 17840.52 | 6960.6 | 11454.38 | 5046.49 | 19520.01 | 28133 | 56229 | 1198.93 |
2-Mar-15 | 17776.12 | 6773 | 11966.17 | 5033.64 | 19206.99 | 24900.89 | 51150 | 1178.63 |
2-Feb-15 | 18132.7 | 6946.7 | 11401.66 | 4951.48 | 18797.94 | 24823.29 | 51583 | 1227.08 |
2-Jan-15 | 17164.95 | 6749.4 | 10694.32 | 4604.25 | 17674.39 | 24507.05 | 46908 | 1250.75 |
- Compute the covariance matrix and state the variance for the Nikkei index.
- What are the smallest and largest values of the target returns which seem sensible, i.e., beyond which the minimum variance portfolio model will not change its answer?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, finance and related others by exploring similar questions and additional content below.Recommended textbooks for you