Differentiate. d/ 4 – xex dx x + ex - [

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Differentiate**

\[ \frac{d}{dx} \left( \frac{4 - xe^x}{x + e^x} \right) = \quad \underline{\hspace{5cm}} \]

In this problem, we are tasked with differentiating the given function:

\[ \frac{d}{dx} \left( \frac{4 - xe^x}{x + e^x} \right) \]

To solve this, we need to apply the quotient rule of differentiation. The quotient rule states that if we have a function of the form:

\[ \frac{u(x)}{v(x)} \]

where \( u(x) \) and \( v(x) \) are differentiable functions of \( x \), then the derivative is given by:

\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} \]

In our case, let:

\[ u(x) = 4 - xe^x \]
\[ v(x) = x + e^x \]

First, we need to find the derivatives \( u'(x) \) and \( v'(x) \):

For \( u(x) = 4 - xe^x \):

\[ u'(x) = \frac{d}{dx}(4) - \frac{d}{dx}(xe^x) \]
\[ u'(x) = 0 - \left( x \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(x) \right) \]
\[ u'(x) = 0 - \left( x \cdot e^x + e^x \cdot 1 \right) \]
\[ u'(x) = -\left( x e^x + e^x \right) \]
\[ u'(x) = -e^x (x + 1) \]

For \( v(x) = x + e^x \):

\[ v'(x) = \frac{d}{dx}(x) + \frac{d}{dx}(e^x) \]
\[ v'(x) = 1 + e^x \]

Now, substitute \( u(x) \), \( u
Transcribed Image Text:**Differentiate** \[ \frac{d}{dx} \left( \frac{4 - xe^x}{x + e^x} \right) = \quad \underline{\hspace{5cm}} \] In this problem, we are tasked with differentiating the given function: \[ \frac{d}{dx} \left( \frac{4 - xe^x}{x + e^x} \right) \] To solve this, we need to apply the quotient rule of differentiation. The quotient rule states that if we have a function of the form: \[ \frac{u(x)}{v(x)} \] where \( u(x) \) and \( v(x) \) are differentiable functions of \( x \), then the derivative is given by: \[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} \] In our case, let: \[ u(x) = 4 - xe^x \] \[ v(x) = x + e^x \] First, we need to find the derivatives \( u'(x) \) and \( v'(x) \): For \( u(x) = 4 - xe^x \): \[ u'(x) = \frac{d}{dx}(4) - \frac{d}{dx}(xe^x) \] \[ u'(x) = 0 - \left( x \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(x) \right) \] \[ u'(x) = 0 - \left( x \cdot e^x + e^x \cdot 1 \right) \] \[ u'(x) = -\left( x e^x + e^x \right) \] \[ u'(x) = -e^x (x + 1) \] For \( v(x) = x + e^x \): \[ v'(x) = \frac{d}{dx}(x) + \frac{d}{dx}(e^x) \] \[ v'(x) = 1 + e^x \] Now, substitute \( u(x) \), \( u
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning