Determine the time needed to decrease the temperature of a solid cylinder from 40 C to 35 C if the ambient temperature is equal to 31 C. The cylinder has a length equals to 0.9 m and diameter equals to 100 mm. The heat convective coefficient is equal to 9 W/m^2.K. The cylinder has a conductivity equals to 2 W/m.K, a density equals to 1200 kg/m^3 and its Cp is equal to 4.700 kJ/kgK.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Determine the time needed to decrease the temperature of a solid cylinder from 40 C to 35 C if the ambient
temperature is equal to 31 C. The cylinder has a length equals to 0.9 m and diameter equals to 100 mm. The heat
convective coefficient is equal to 9 W/m^2.K. The cylinder has a conductivity equals to 2 W/m.K, a density equals to
1200 kg/m^3 and its Cp is equal to 4.700 kJ/kgK.
Transcribed Image Text:Determine the time needed to decrease the temperature of a solid cylinder from 40 C to 35 C if the ambient temperature is equal to 31 C. The cylinder has a length equals to 0.9 m and diameter equals to 100 mm. The heat convective coefficient is equal to 9 W/m^2.K. The cylinder has a conductivity equals to 2 W/m.K, a density equals to 1200 kg/m^3 and its Cp is equal to 4.700 kJ/kgK.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY