Define a relation Q on the set R × R as follows. For all ordered pairs (w, x) and (y, z) in R x R, (w, x) Q (y, z) = x = z. (a) Prove that Q is an equivalence relation. To prove that Q is an equivalence relation, it is necessary to show that Q is reflexive, symmetric, and transitive. Proof that Q is an equivalence relation:
Define a relation Q on the set R × R as follows. For all ordered pairs (w, x) and (y, z) in R x R, (w, x) Q (y, z) = x = z. (a) Prove that Q is an equivalence relation. To prove that Q is an equivalence relation, it is necessary to show that Q is reflexive, symmetric, and transitive. Proof that Q is an equivalence relation:
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:(2) Proof that Q is symmetric:
Construct a proof by selecting sentences from the following scrambled list and putting them in the correct order.
By the symmetric property of equality, z = x.
By definition of Q, w = y.
By definition of Q, x = z.
By definition of Q, (z, y) Q (x, w).
By definition of Q, (y, z) Q (w, x).
By the symmetric property of equality, y = w.
Proof:
1. Suppose (w, x) and (y, z) are any ordered pairs of real numbers such that (w, x) Q (y, z).
2. ---Select--
3. ---Select--
4. ---Select---
5. Hence, Q is symmetric.

Transcribed Image Text:Define a relation Q on the set R × R as follows.
For all ordered pairs (w, x) and (y, z) in R x R, (w, x) Q (y, z) + x = z.
(a) Prove that Q is an equivalence relation.
To prove that Q is an equivalence relation, it is necessary to show that Q is reflexive, symmetric, and transitive.
Proof that Q is an equivalence relation:
(1) Proof that Q is reflexive:
Construct a proof by selecting sentences from the following scrambled list and putting them in the correct order.
By definition of Q, (w, x) = (w, x).
By the reflexive property of equality, x = x
By the reflexive property of equality, w = w.
By the symmetric property of equality, x = x.
By the symmetric property of equality, w
= w
E W.
Proof:
1. Suppose (w, x) is any ordered pair of real numbers.
2. ---Select---
3. ---Select-.
4. Hence, Q is reflexive.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

