Consider the vectors u₁ = and the vector w = 3 H Q- W U2 = []} Uz = U2+ →→→→ →→→→ If u IS in the span of u1, U2, u3, U4, write was a linear combination of u1, U2, u3, U4, using as few nonzero coefficients as possible. -2 U4 = " →→→→ If w IS NOT in the span of u₁, u, u3, U4, write DNE in each of the answer boxes. ui+ Uz + 3 Us

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the vectors 

\[
\vec{u_1} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \vec{u_2} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad \vec{u_3} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}, \quad \vec{u_4} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}
\]

and the vector 

\[
\vec{w} = \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix}.
\]

If \(\vec{w}\) **IS** in the span of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write \(\vec{w}\) as a linear combination of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), **using as few nonzero coefficients as possible**.

If \(\vec{w}\) **IS NOT** in the span of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write DNE in each of the answer boxes.

\[
\vec{w} = \boxed{\phantom{0}} \vec{u_1} + \boxed{\phantom{0}} \vec{u_2} + \boxed{\phantom{0}} \vec{u_3} + \boxed{\phantom{0}} \vec{u_4}
\]
Transcribed Image Text:Consider the vectors \[ \vec{u_1} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \vec{u_2} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad \vec{u_3} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}, \quad \vec{u_4} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \] and the vector \[ \vec{w} = \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix}. \] If \(\vec{w}\) **IS** in the span of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write \(\vec{w}\) as a linear combination of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), **using as few nonzero coefficients as possible**. If \(\vec{w}\) **IS NOT** in the span of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write DNE in each of the answer boxes. \[ \vec{w} = \boxed{\phantom{0}} \vec{u_1} + \boxed{\phantom{0}} \vec{u_2} + \boxed{\phantom{0}} \vec{u_3} + \boxed{\phantom{0}} \vec{u_4} \]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,