Let V₁, V2, V3 be the vectors in R³ defined by 18 ---A V2 = -14 (a) Is (V1, V₂, V3} linearly independent? Write all zeros if it is, or if it is linearly dependent write the zero vector as a non-trivial (not all zero coefficients) linear combination of V₁, V₂, and V3 = (c) Type the dimension of span {V1, V2, Vs}: Note: You can earn partial credit on this problem. 0 -6 -25 -181 V3 = 20 0=v₁+√₂+vs (b) Is (V1, V3} linearly Independent? Write all zeros if it is, or if it is linearly dependent write the zero vector as a non-trivial (not all zero coefficients) linear combination of V₁ and V3. 0=v₁+vs V3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) be the vectors in \( \mathbb{R}^3 \) defined by

\[ \mathbf{v}_1 = \begin{bmatrix}
0 \\
-6 \\
25
\end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix}
18 \\
-14 \\
47
\end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix}
-18 \\
20 \\
-22
\end{bmatrix}. \]

(a) Is \( \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) linearly independent? Write all zeros if it is, or if it is linearly dependent write the zero vector as a non-trivial (not all zero coefficients) linear combination of \( \mathbf{v}_1, \mathbf{v}_2, \) and \( \mathbf{v}_3 \).

\[ 0 = \boxed{} \mathbf{v}_1 + \boxed{} \mathbf{v}_2 + \boxed{} \mathbf{v}_3 \]

(b) Is \( \{ \mathbf{v}_1, \mathbf{v}_3 \} \) linearly independent? Write all zeros if it is, or if it is linearly dependent write the zero vector as a non-trivial (not all zero coefficients) linear combination of \( \mathbf{v}_1 \) and \( \mathbf{v}_3 \).

\[ 0 = \boxed{} \mathbf{v}_1 + \boxed{} \mathbf{v}_3 \]

(c) Type the dimension of span(\( \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \)) \( \boxed{} \)

*Note: You can earn partial credit on this problem.*
Transcribed Image Text:Let \( \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) be the vectors in \( \mathbb{R}^3 \) defined by \[ \mathbf{v}_1 = \begin{bmatrix} 0 \\ -6 \\ 25 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 18 \\ -14 \\ 47 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -18 \\ 20 \\ -22 \end{bmatrix}. \] (a) Is \( \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) linearly independent? Write all zeros if it is, or if it is linearly dependent write the zero vector as a non-trivial (not all zero coefficients) linear combination of \( \mathbf{v}_1, \mathbf{v}_2, \) and \( \mathbf{v}_3 \). \[ 0 = \boxed{} \mathbf{v}_1 + \boxed{} \mathbf{v}_2 + \boxed{} \mathbf{v}_3 \] (b) Is \( \{ \mathbf{v}_1, \mathbf{v}_3 \} \) linearly independent? Write all zeros if it is, or if it is linearly dependent write the zero vector as a non-trivial (not all zero coefficients) linear combination of \( \mathbf{v}_1 \) and \( \mathbf{v}_3 \). \[ 0 = \boxed{} \mathbf{v}_1 + \boxed{} \mathbf{v}_3 \] (c) Type the dimension of span(\( \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \)) \( \boxed{} \) *Note: You can earn partial credit on this problem.*
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,