Consider the vectors u₁ = ------- 2 and the vector : 3 B = If IS in the span of ₁, ₂, 3, 4, write was a linear combination of 1, 2, 3, 4, using as few nonzero coefficients as possible. X U2+ 1 3 →→→ If w IS NOT in the span of u₁, 2, 3, 4, write DNE in each of the answer boxes. w = 7 x uit- XU3+ 2 X U4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Vectors and Linear Combinations**

Consider the vectors:
\[
\vec{u_1} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \vec{u_2} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad \vec{u_3} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}, \quad \vec{u_4} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}
\]

and the vector:
\[
\vec{w} = \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix}.
\]

### Instructions:

**If** \(\vec{w}\) **is in the span of** \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write \(\vec{w}\) as a linear combination of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), **using as few nonzero coefficients as possible**.

**If** \(\vec{w}\) **is NOT in the span of** \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write "DNE" in each of the answer boxes.

### Solution:

\[
\vec{w} = 7 \vec{u_1} + (-7) \vec{u_2} + 1 \vec{u_3} + 2 \vec{u_4}
\]

This expression indicates that \(\vec{w}\) can be expressed as a linear combination of the vectors \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\).
Transcribed Image Text:**Vectors and Linear Combinations** Consider the vectors: \[ \vec{u_1} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \vec{u_2} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad \vec{u_3} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}, \quad \vec{u_4} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \] and the vector: \[ \vec{w} = \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix}. \] ### Instructions: **If** \(\vec{w}\) **is in the span of** \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write \(\vec{w}\) as a linear combination of \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), **using as few nonzero coefficients as possible**. **If** \(\vec{w}\) **is NOT in the span of** \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\), write "DNE" in each of the answer boxes. ### Solution: \[ \vec{w} = 7 \vec{u_1} + (-7) \vec{u_2} + 1 \vec{u_3} + 2 \vec{u_4} \] This expression indicates that \(\vec{w}\) can be expressed as a linear combination of the vectors \(\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\).
Expert Solution
steps

Step by step

Solved in 3 steps with 14 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,