Consider the following reaction in a sealed vessel kept at constant temperature: A(g)  ⇌  2B(g) If the reaction is started with 2.0 mol of A and no B, the amount of B at equilibrium is 3.0 mol. How many moles of A should one start with to obtain 6.0 mol of B at equilibrium under the same conditions (same vessel, same temperature, no gas B present initially)?   A.  5.6 mol   B.  5.0 mol   C.  4.0 mol   D.  6.0 mol

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
100%

Consider the following reaction in a sealed vessel kept at constant temperature:

A(g)  ⇌  2B(g)

If the reaction is started with 2.0 mol of A and no B, the amount of B at equilibrium is 3.0 mol. How many moles of A should one start with to obtain 6.0 mol of B at equilibrium under the same conditions (same vessel, same temperature, no gas B present initially)?

  •  
    A. 

    5.6 mol

  •  
    B. 

    5.0 mol

  •  
    C. 

    4.0 mol

  •  
    D. 

    6.0 mol

  •  
    E. 

    6.5 mol

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Equilibrium Constant and composition
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The