Consider the equilibrium reaction 2N2(g) + O2(g) = 2N2O(g) In a particular experiment, the equilibrium concentration of N2 is 0.048 M, of O2, 0.093 M, and of N20, 6.55 x 10-21 M. What is the value of the equilibrium constant K,? а. 1.5 х 10-18 b. 2.0 х 1037 с. 2.2 х 10-36 d. 3.1 x 10-17 е. 5.0 х 10%6
Consider the equilibrium reaction 2N2(g) + O2(g) = 2N2O(g) In a particular experiment, the equilibrium concentration of N2 is 0.048 M, of O2, 0.093 M, and of N20, 6.55 x 10-21 M. What is the value of the equilibrium constant K,? а. 1.5 х 10-18 b. 2.0 х 1037 с. 2.2 х 10-36 d. 3.1 x 10-17 е. 5.0 х 10%6
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
40) please see attached
![---
**Chemical Equilibrium Constant Calculation**
Consider the equilibrium reaction:
\[ 2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g) \]
In a particular experiment, the equilibrium concentration of N₂ is 0.048 M, of O₂ is 0.093 M, and of N₂O is 6.55 x 10⁻²¹ M. What is the value of the equilibrium constant \( K_c \)?
**Possible answers**:
a. \( 1.5 \times 10^{-18} \)
b. \( 2.0 \times 10^{-37} \)
c. \( 2.2 \times 10^{-36} \)
d. \( 3.1 \times 10^{-17} \)
e. \( 5.0 \times 10^{36} \)
---
Interpretation:
To determine the equilibrium constant \( K_c \), use the expression for the equilibrium constant \( K_c \) for the given balanced chemical equation:
\[ K_c = \frac{[N_2O]^2}{[N_2]^2 [O_2]} \]
From the given data:
\[ [N_2] = 0.048 \, M \]
\[ [O_2] = 0.093 \, M \]
\[ [N_2O] = 6.55 \times 10^{-21} \, M \]
Substitute these values into the expression for \( K_c \):
\[ K_c = \frac{(6.55 \times 10^{-21})^2}{(0.048)^2 \times (0.093)} \]
Calculate the numerator:
\[ (6.55 \times 10^{-21})^2 = 4.29 \times 10^{-41} \]
Calculate the denominator:
\[ (0.048)^2 \times 0.093 = 2.14 \times 10^{-4} \]
Finally, divide the numerator by the denominator to find \( K_c \):
\[ K_c = \frac{4.29 \times 10^{-41}}{2.14 \times 10^{-4}} = 2.0 \times 10^{-37} \]
Therefore, the correct answer is:
b. \( 2.0 \times 10^{-37}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F48deb947-3d41-43de-ac43-bef03e01cc59%2F7c05f84d-01a3-40b9-8875-df4b65230bb9%2Fh9pu4th.png&w=3840&q=75)
Transcribed Image Text:---
**Chemical Equilibrium Constant Calculation**
Consider the equilibrium reaction:
\[ 2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g) \]
In a particular experiment, the equilibrium concentration of N₂ is 0.048 M, of O₂ is 0.093 M, and of N₂O is 6.55 x 10⁻²¹ M. What is the value of the equilibrium constant \( K_c \)?
**Possible answers**:
a. \( 1.5 \times 10^{-18} \)
b. \( 2.0 \times 10^{-37} \)
c. \( 2.2 \times 10^{-36} \)
d. \( 3.1 \times 10^{-17} \)
e. \( 5.0 \times 10^{36} \)
---
Interpretation:
To determine the equilibrium constant \( K_c \), use the expression for the equilibrium constant \( K_c \) for the given balanced chemical equation:
\[ K_c = \frac{[N_2O]^2}{[N_2]^2 [O_2]} \]
From the given data:
\[ [N_2] = 0.048 \, M \]
\[ [O_2] = 0.093 \, M \]
\[ [N_2O] = 6.55 \times 10^{-21} \, M \]
Substitute these values into the expression for \( K_c \):
\[ K_c = \frac{(6.55 \times 10^{-21})^2}{(0.048)^2 \times (0.093)} \]
Calculate the numerator:
\[ (6.55 \times 10^{-21})^2 = 4.29 \times 10^{-41} \]
Calculate the denominator:
\[ (0.048)^2 \times 0.093 = 2.14 \times 10^{-4} \]
Finally, divide the numerator by the denominator to find \( K_c \):
\[ K_c = \frac{4.29 \times 10^{-41}}{2.14 \times 10^{-4}} = 2.0 \times 10^{-37} \]
Therefore, the correct answer is:
b. \( 2.0 \times 10^{-37}
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY