Consider N distinguishable 3-dimensional harmonic oscillators of Hamiltonian 3N p? H(q,p) = > | 2m i=1 This is a simple model of the vibrations of atoms in a solid. 1. Calculate the number of accessible states 2 for a given energy E. Since N is very large, you may assume that the number of state of energy E is the same as the number of states of energy

icon
Related questions
Question
Consider N distinguishable 3-dimensional harmonic oscillators of Hamiltonian
H(q, p) = P mw²q?
2m
2
3N
i=1
This is a simple model of the vibrations of atoms in a solid.
1. Calculate the umber of accessible states 2 for a given energy E.
Since N is very large, you may assume that the number of state of energy E is the
same as the number of states of energy <E
2. Calculate the entropy S, the temperature T, the energy E and the heat capacity C.
Transcribed Image Text:Consider N distinguishable 3-dimensional harmonic oscillators of Hamiltonian H(q, p) = P mw²q? 2m 2 3N i=1 This is a simple model of the vibrations of atoms in a solid. 1. Calculate the umber of accessible states 2 for a given energy E. Since N is very large, you may assume that the number of state of energy E is the same as the number of states of energy <E 2. Calculate the entropy S, the temperature T, the energy E and the heat capacity C.
Expert Solution
Step 1 Concept

(1) Calculate the number of accessible states for the given energy.

Solution:

If the solid crystal is made up of N atoms, the motion of each of them has three independent components. An atom can not move freely but can vibrate about its equilibrium position. That means vibrations of an atom are equivalent to vibration of three harmonic oscillators.

As given, N distinguishable 3-dimensional harmonic oscillator of Hamiltonian is given by;

Hq,p=i=13N pi22m +mω2 qi22 This can be written ingeneral form as;H=p22m +mω2 x22But H=EE=p22m +12 k x2Therefore;H=En =n+12ħωwhere; n=1.2.3......The partition function is given by;Z=n e-βEnZ=n=1  e-βn+12ħωZ=n=1  e-βnħω  ×e-βħω2Z=e-βħω2n=1  e-βnħω Z=e-βħω2 1+e-βħω +e-2βħω+e-3βħω +..........But,1+e-βħω +e-2βħω+e-3βħω +.......... =geometric progression which gives1+e-βħω +e-2βħω+e-3βħω +.......... =11-e-βħωTherefore;Z=e-βħω2 1-e-βħω This is for an atom with 3 harmonic oscillatorsFor N atoms 3N harmonic oscillatos are required.Z3N=Z13NZ3N=[e-βħω2 (1-e-βħω)]3N Z3N=[1 (e+βħω2-e-βħω2)]3N The number of accecible states is given byΩ = VN3N2! 2πmEnh23N2Ω = VN3N2! 2πm n+12 ħωh23N2 Answer=The number of accesible statesfor the given energy is;Ω = VN3N2 ! [2πm n+12 ħωh2]3N2 

 

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer