Consider a long, horizontal Large Wire with current of 10A flowing through it. We want to levitate a horizontal, thin, 0.50 m length of wire above it. But before we levitate, suppose we connect the ends of the thin wire and curl it into a coil that is 30 turns, and has a resistance of 20 N. We then move the coil from a location 0.50 m above the Large Wire to a location 0.03 m above the large wire, in a time interval of 50 ms. A. How should the coil be oriented to experience the greatest magnetic flux? Explain. B. Draw a diagram showing this orientation of the coil and the Large Wire, label the directions of currents, and all other relevant quantities and vectors. C Find the power dissipated by the coil at is it move
Consider a long, horizontal Large Wire with current of 10A flowing through it. We want to levitate a horizontal, thin, 0.50 m length of wire above it. But before we levitate, suppose we connect the ends of the thin wire and curl it into a coil that is 30 turns, and has a resistance of 20 N. We then move the coil from a location 0.50 m above the Large Wire to a location 0.03 m above the large wire, in a time interval of 50 ms.
A. How should the coil be oriented to experience the greatest magnetic flux? Explain.
B. Draw a diagram showing this orientation of the coil and the Large Wire, label the directions of currents, and all other relevant quantities and vectors.
C Find the power dissipated by the coil at is it moved
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images