Compare the simple linear model in Question 2 and the exponential model in Question 3, do you observe any improvements after conducting the exponential model relative to the linear model? Support your conclusion with details (such as R-Square, homogeneity of variance and normality test) this is Q2 and my answer to it: Fit the simple linear regression model TIME = β0 + β1ENZ + ε. Write down the estimated regression function and examine the residual plot and normality test. Describe what you observed and make brief comments. Hint: you need to check the ANOVA table (that is the F-Statistic and its p-value on the last line of the summary(yourmodel) output)), parameter estimates tables, R-Square, residual plot and normality test. Coefficients: (Intercept)          enz     -108.716        3.967  TIME= -108.716 + 3.967 (ENZ) + ε By checking normality using the Shapiro-Wilk test, the p-value is 0.0000 less than 0.05. The null is rejected, and the data is not normally distributed. -----------------------------------------------        Test             Statistic       pvalue  ----------------------------------------------- Shapiro-Wilk              0.866       0.0000 Kolmogorov-Smirnov   0.14      0.2190 Cramer-von Mises    5.1667      0.0000 Anderson-Darling      1.9562      0.0000 ----------------------------------------------- Residuals:     Min      1Q  Median      3Q     Max -243.33  -64.74  -25.19   49.45  486.50   Coefficients:              Estimate Std. Error t value Pr(>|t|)    (Intercept) -108.7161    61.7191  -1.761    0.084 .  enz            3.9668     0.7721   5.137 4.25e-06 *** Residual standard error: 119.5 on 52 degrees of freedom Multiple R-squared:  0.3367,  Adjusted R-squared:  0.3239 F-statistic: 26.39 on 1 and 52 DF,  p-value: 4.25e-06 This is Q3 and my answer to it: Fit the exponential model logTIME = β0 + β1ENZ + ε. Write down the estimated regression function. Does the model fit well? Why? Hint: you need to check the ANOVA table (that is the F-Statistic and its p-value on the last line of the summary(yourmodel) output)), parameter estimates tables, RSquare, residual plot and normality test. lm(formula = log(time) ~ enz, data = patients) logTIME = β0 + β1ENZ + ε. = 3.558633 ~ 0.019727ENZ +  ε Residuals:      Min       1Q   Median       3Q      Max -1.19415 -0.29725 -0.02198  0.34125  1.01853   Coefficients:             Estimate Std. Error t value Pr(>|t|)    (Intercept) 3.558633   0.245526  14.494  < 2e-16 *** enz         0.019727   0.003072   6.423 4.12e-08 *** --- Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   Residual standard error: 0.4753 on 52 degrees of freedom Multiple R-squared:  0.4424,  Adjusted R-squared:  0.4316 F-statistic: 41.25 on 1 and 52 DF,  p-value: 4.118e-08 The model fit well, as the p-value is 4.118e-08, Normality test: W = 0.98822, p-value = 0.8716, more than 0.05. Fail to reject the null and conclude the data are normally distributed.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
  1. Compare the simple linear model in Question 2 and the exponential model in Question 3, do you observe any improvements after conducting the exponential model relative to the linear model? Support your conclusion with details (such as R-Square, homogeneity of variance and normality test)

this is Q2 and my answer to it:

  1. Fit the simple linear regression model TIME = β0 + β1ENZ + ε. Write down the estimated regression function and examine the residual plot and normality test. Describe what you observed and make brief comments. Hint: you need to check the ANOVA table (that is the F-Statistic and its p-value on the last line of the summary(yourmodel) output)), parameter estimates tables, R-Square, residual plot and normality test.

Coefficients:

(Intercept)          enz 

   -108.716        3.967 

TIME= -108.716 + 3.967 (ENZ) + ε

By checking normality using the Shapiro-Wilk test, the p-value is 0.0000 less than 0.05. The null is rejected, and the data is not normally distributed.

-----------------------------------------------

       Test             Statistic       pvalue 

-----------------------------------------------

Shapiro-Wilk              0.866       0.0000

Kolmogorov-Smirnov   0.14      0.2190

Cramer-von Mises    5.1667      0.0000

Anderson-Darling      1.9562      0.0000

-----------------------------------------------

Residuals:

    Min      1Q  Median      3Q     Max

-243.33  -64.74  -25.19   49.45  486.50

 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)   

(Intercept) -108.7161    61.7191  -1.761    0.084 . 

enz            3.9668     0.7721   5.137 4.25e-06 ***

Residual standard error: 119.5 on 52 degrees of freedom

Multiple R-squared:  0.3367,  Adjusted R-squared:  0.3239

F-statistic: 26.39 on 1 and 52 DF,  p-value: 4.25e-06

This is Q3 and my answer to it:

  1. Fit the exponential model logTIME = β0 + β1ENZ + ε. Write down the estimated regression function. Does the model fit well? Why? Hint: you need to check the ANOVA table (that is the F-Statistic and its p-value on the last line of the summary(yourmodel) output)), parameter estimates tables, RSquare, residual plot and normality test.

lm(formula = log(time) ~ enz, data = patients)

logTIME = β0 + β1ENZ + ε.

= 3.558633 ~ 0.019727ENZ +  ε

Residuals:

     Min       1Q   Median       3Q      Max

-1.19415 -0.29725 -0.02198  0.34125  1.01853

 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) 3.558633   0.245526  14.494  < 2e-16 ***

enz         0.019727   0.003072   6.423 4.12e-08 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.4753 on 52 degrees of freedom

Multiple R-squared:  0.4424,  Adjusted R-squared:  0.4316

F-statistic: 41.25 on 1 and 52 DF,  p-value: 4.118e-08

The model fit well, as the p-value is 4.118e-08,

Normality test:

W = 0.98822, p-value = 0.8716, more than 0.05. Fail to reject the null and conclude the data are normally distributed.

 

20
40
60
80
100
120
enz
log(time)
3.5 4.0 4.5 5.0 5.5 6.0 6.5
80
Transcribed Image Text:20 40 60 80 100 120 enz log(time) 3.5 4.0 4.5 5.0 5.5 6.0 6.5 80
Residuals vs Fitted
540
053
ㅇㅇ
180
100
200
300
Fitted values
Im(time - enz)
Residuals
-200
007
Transcribed Image Text:Residuals vs Fitted 540 053 ㅇㅇ 180 100 200 300 Fitted values Im(time - enz) Residuals -200 007
Expert Solution
Step 1

The coefficient of determination is defined as the proportion of total variability in the dependent variable, which is explained by the model. It is denoted by R2.

The value of R2=0 indicates that the dependent variable cannot be predicted using the independent variable. The value of R2=1 indicates the perfect fit. Hence, the closer the value of R2 is to 1, the better the fit.

For the linear model, the multiple R2-squared and adjusted R2-squared both lies close to 33% indicated not so the good fit of the model. Whereas the multiple R2-squared and adjusted R2-squared for exponential model lie close to 45% indicating a comparatively better fit of the model.

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman