code required for python:  For this question, you will be required to use the binary search to find the root of some function f(x)f(x) on the domain x∈[a,b]x∈[a,b] by continuously bisecting the domain. In our case, the root of the function can be defined as the x-values where the function will return 0, i.e. f(x)=0f(x)=0 For example, for the function: f(x)=sin2(x)x2−2f(x)=sin2(x)x2−2 on the domain [0,2][0,2], the root can be found at x≈1.43x≈1.43 Constraints Stopping criteria: ∣∣f(root)∣∣<0.0001|f(root)|<0.0001 or you reach a maximum of 1000 iterations. Round your answer to two decimal places. Function specifications Argument(s): f (function) →→ mathematical expression in the form of a lambda function. domain (tuple) →→ the domain of the function given a set of two integers. MAX (int) →→ the maximum number of iterations that will be performed by the function. Return: root (float) →→ return the root (rounded to two decimals) of the given function. my code below , however as per attached image some tests do not return the correct result.  ### START FUNCTION def binary_search(f,domain, MAX = 1000):     start ,end = domain      while start < end and MAX:         mid = (start + end)/ 2         if abs(f(mid)) < 0.0001:             return round(mid,2)         if f(mid) < 0:             start = mid         else:             end = mid         MAX -= 1        return round(mid,2) ### END FUNCTION f = lambda x:(np.sin(x)**2)*(x**2)-2 domain = (0,2) x=binary_search(f,domain) print (binary_search(lambda x:(np.sin(x)**2)*(x**2)-2,(0,2))==1.43) Expected output binary_search(lambda x:(np.sin(x)**2)*(x**2)-2,(0,2))==1.43

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

 

code required for python: 

For this question, you will be required to use the binary search to find the root of some function f(x)f(x) on the domain x∈[a,b]x∈[a,b] by continuously bisecting the domain. In our case, the root of the function can be defined as the x-values where the function will return 0, i.e. f(x)=0f(x)=0

For example, for the function: f(x)=sin2(x)x2−2f(x)=sin2(x)x2−2 on the domain [0,2][0,2], the root can be found at x≈1.43x≈1.43

Constraints

  • Stopping criteria: ∣∣f(root)∣∣<0.0001|f(root)|<0.0001 or you reach a maximum of 1000 iterations.
  • Round your answer to two decimal places.

Function specifications

Argument(s):

  • f (function) →→ mathematical expression in the form of a lambda function.
  • domain (tuple) →→ the domain of the function given a set of two integers.
  • MAX (int) →→ the maximum number of iterations that will be performed by the function.

Return:

  • root (float) →→ return the root (rounded to two decimals) of the given function.

my code below , however as per attached image some tests do not return the correct result. 

### START FUNCTION
def binary_search(f,domain, MAX = 1000):
    start ,end = domain 
    while start < end and MAX:
        mid = (start + end)/ 2
        if abs(f(mid)) < 0.0001:
            return round(mid,2)
        if f(mid) < 0:
            start = mid
        else:
            end = mid
        MAX -= 1   
    return round(mid,2)


### END FUNCTION

f = lambda x:(np.sin(x)**2)*(x**2)-2
domain = (0,2)
x=binary_search(f,domain)
print (binary_search(lambda x:(np.sin(x)**2)*(x**2)-2,(0,2))==1.43)

Expected output

binary_search(lambda x:(np.sin(x)**2)*(x**2)-2,(0,2))==1.43

binary_search
binary_search
Inputs: [<function <lambda> at ex7ff83dfdf6a8>, (2, 3)]
PASSED
FAILED
assert 2.0 == 2.56
your output:
expected output: 2.56
binary_search
Inputs: [<function <lambda> at 0x7ff83deea158>, (-2,
2.0
FAILED
-1)]
assert -2.0 == -1.43
your output:
expected output: -1.43
binary_search
binary_search
Inputs: [<function <lambda> at ex7ff83deea268>, (-2,
-2.0
PASSED
FAILED
-1)]
assert -1.0 == -1.68
your output:
expected output: -1.68
-1.0
Transcribed Image Text:binary_search binary_search Inputs: [<function <lambda> at ex7ff83dfdf6a8>, (2, 3)] PASSED FAILED assert 2.0 == 2.56 your output: expected output: 2.56 binary_search Inputs: [<function <lambda> at 0x7ff83deea158>, (-2, 2.0 FAILED -1)] assert -2.0 == -1.43 your output: expected output: -1.43 binary_search binary_search Inputs: [<function <lambda> at ex7ff83deea268>, (-2, -2.0 PASSED FAILED -1)] assert -1.0 == -1.68 your output: expected output: -1.68 -1.0
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY