class Solution:     def searchRange(self, nums, target):         def binary_search(nums, target, left, right):             while left <= right:                 mid = (left + right) // 2                 if nums[mid] == target:                     return mid                 elif nums[mid] < target:                     left = mid + 1                 else:                     right = mid - 1             return -1           def find_leftmost(nums, target):             left, right = 0, len(nums) - 1             while left <= right:                 mid = (left + right) // 2                 if nums[mid] >= target:                     right = mid - 1                 else:                     left = mid + 1             return left           def find_rightmost(nums, target):             left, right = 0, len(nums) - 1             while left <= right:                 mid = (left + right) // 2                 if nums[mid] <= target:                     left = mid + 1                 else:                     right = mid - 1             return right           left_idx = find_leftmost(nums, target)         right_idx = find_rightmost(nums, target)           if left_idx <= right_idx:             return [left_idx, right_idx]         else:             return [-1, -1]   give a detailed but 2-3 sentence analysis of the time and complexity and space complexity of the algorithm in big O notation

icon
Related questions
Question

class Solution:

    def searchRange(self, nums, target):

        def binary_search(nums, target, left, right):

            while left <= right:

                mid = (left + right) // 2

                if nums[mid] == target:

                    return mid

                elif nums[mid] < target:

                    left = mid + 1

                else:

                    right = mid - 1

            return -1

 

        def find_leftmost(nums, target):

            left, right = 0, len(nums) - 1

            while left <= right:

                mid = (left + right) // 2

                if nums[mid] >= target:

                    right = mid - 1

                else:

                    left = mid + 1

            return left

 

        def find_rightmost(nums, target):

            left, right = 0, len(nums) - 1

            while left <= right:

                mid = (left + right) // 2

                if nums[mid] <= target:

                    left = mid + 1

                else:

                    right = mid - 1

            return right

 

        left_idx = find_leftmost(nums, target)

        right_idx = find_rightmost(nums, target)

 

        if left_idx <= right_idx:

            return [left_idx, right_idx]

        else:

            return [-1, -1]

 


give a detailed but 2-3 sentence analysis of the time and complexity and space complexity of the algorithm in big O notation

AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions